在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点

在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点求证:(1)平面ADE⊥平面BC... 在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点
求证:(1)平面ADE⊥平面BCC1B1;
(2)直线A1F∥平面ADE.
展开
匿名用户
2013-03-29
展开全部
解:(1)∵三棱柱ABC-A1B1C1是直三棱柱,
∴CC1⊥平面ABC,
∵AD⊂平面ABC,
∴AD⊥CC1
又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线
∴AD⊥平面BCC1B1,
∵AD⊂平面ADE
∴平面ADE⊥平面BCC1B1;
(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点
∴A1F⊥B1C1,
∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,
∴A1F⊥CC1
又∵B1C1、CC1是平面BCC1B1内的相交直线
∴A1F⊥平面BCC1B1
又∵AD⊥平面BCC1B1,
∴A1F∥AD
∵A1F⊄平面ADE,AD⊂平面ADE,
∴直线A1F∥平面ADE.
胡艳冰0
2013-06-29
知道答主
回答量:3
采纳率:0%
帮助的人:2.8万
展开全部
(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点
∴A1F⊥B1C1,
∵CC1⊥平面A1B1C1,CC1⊂平面BCC1B1,
∴平面A1B1C1⊥平面BCC1B1,、
平面A1B1C1∩平面BCC1B1=B1C1
又∵A1F⊂平面A1B1C1,且A1F⊥B1C1
∴A1F⊥平面BCC1B1
∵CC1⊂平面A1B1C1
∴A1F⊥CC1
又∵AD⊥平面BCC1B1,
∴A1F∥AD
∵A1F⊄平面ADE,AD⊂平面ADE,
∴直线A1F∥平面ADE.
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式