1个回答
展开全部
设直线AB的斜率为k (a为直线AB的倾斜角)
当a=π/2时,AB垂直于x轴,x=p/2
得y=±p
所以A B的坐标分别为(p/2,p),(p/2,-p)
y1*y2=-p^2,x1*x2=p^2/4
当a≠π/2
y^2=2px
焦点(p/2,0),准线x=-p/2
则直线AB:y=k(x-p/2)
抛物线:y^2=2px
联立
k^2x^2-(k^2p+2p)x+k^2*p^2/4=0
则x1*x2=p^2/4
y1*y2=-p^2
很高兴为您解答,祝你学习进步!【学习宝典】团队为您答题。
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮,谢谢!
当a=π/2时,AB垂直于x轴,x=p/2
得y=±p
所以A B的坐标分别为(p/2,p),(p/2,-p)
y1*y2=-p^2,x1*x2=p^2/4
当a≠π/2
y^2=2px
焦点(p/2,0),准线x=-p/2
则直线AB:y=k(x-p/2)
抛物线:y^2=2px
联立
k^2x^2-(k^2p+2p)x+k^2*p^2/4=0
则x1*x2=p^2/4
y1*y2=-p^2
很高兴为您解答,祝你学习进步!【学习宝典】团队为您答题。
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮,谢谢!
追问
谢谢 知道了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询