已知函数f(x)=1/2x^2+lnx
展开全部
首先函数的定义域为(0,正无穷)
然后求导,f(x)的导数=x+1/x=(x^2+1)/x大于0恒成立,所以函数f(x)在定义域内单调递增。
(2)设g(x)=1/2x^2+lnx-2/3x^3,只需要证明当x>1时, g(x)的最大值都小于0即可。
求导,g(x)的导数=x+1/x-2x^2=-(2x^3-x^2-1)/x=-(x-1)(2x^2+x+1)/x
令g(x)的导数=x+1/x-2x^2=-(2x^3-x^2-1)/x=-(x-1)(2x^2+x+1)/x>0得 x<1
令g(x)的导数=x+1/x-2x^2=-(2x^3-x^2-1)/x=-(x-1)(2x^2+x+1)/x<0得 x>1
所以g(x)在(负无穷,1)单调递增,在(1,正无穷)单调递减, 所以当x>1时, g(x)>g(1)=-1/3>0
所以当x>1时、1/2x^2+lnx<2/3x^3
然后求导,f(x)的导数=x+1/x=(x^2+1)/x大于0恒成立,所以函数f(x)在定义域内单调递增。
(2)设g(x)=1/2x^2+lnx-2/3x^3,只需要证明当x>1时, g(x)的最大值都小于0即可。
求导,g(x)的导数=x+1/x-2x^2=-(2x^3-x^2-1)/x=-(x-1)(2x^2+x+1)/x
令g(x)的导数=x+1/x-2x^2=-(2x^3-x^2-1)/x=-(x-1)(2x^2+x+1)/x>0得 x<1
令g(x)的导数=x+1/x-2x^2=-(2x^3-x^2-1)/x=-(x-1)(2x^2+x+1)/x<0得 x>1
所以g(x)在(负无穷,1)单调递增,在(1,正无穷)单调递减, 所以当x>1时, g(x)>g(1)=-1/3>0
所以当x>1时、1/2x^2+lnx<2/3x^3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询