
已知集合A={x/x²+(2+a)x+1=0,x∈R}B={x∈R/x>0}
展开全部
A={x|x²+(2+a)x+1=0,x∈R}
B={x|x>0}
要使得A∩B=∅
则要求A中方程x²+(2+a)x+1=0的根分布在(-∞,0]上,或者无实数根
设f(x)=x²+(2+a)x+1
①【有根时】那么f(0)≥0
对称轴x=-(2+a)/2<0,Δ=(a+2)²-4=a²+4a≥0
所以a≥0
②【无根时】Δ=(a+2)²-4=a²+4a<0
所以-4<a<0
所以存在这样的a,它的取值范围是{a|a>-4}
B={x|x>0}
要使得A∩B=∅
则要求A中方程x²+(2+a)x+1=0的根分布在(-∞,0]上,或者无实数根
设f(x)=x²+(2+a)x+1
①【有根时】那么f(0)≥0
对称轴x=-(2+a)/2<0,Δ=(a+2)²-4=a²+4a≥0
所以a≥0
②【无根时】Δ=(a+2)²-4=a²+4a<0
所以-4<a<0
所以存在这样的a,它的取值范围是{a|a>-4}
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询