已知函数f(x)=lnx+ax2+bx 其中a,b为 50

已知函数f(x)=lnx+ax2+bx其中a,b为常数且a≠0,在x=1处有极值(1),当a=1时,求f(x)的单调区间(2),若f(x)在(0,e】上的最大值为1,求a... 已知函数f(x)=lnx+ax2+bx 其中a,b为常数 且a≠0,在x=1处有极值
(1),当a=1时,求f(x)的单调区间
(2),若f(x)在(0,e】上的最大值为1,求a的值
展开
良驹绝影
2013-04-09 · TA获得超过13.6万个赞
知道大有可为答主
回答量:2.8万
采纳率:80%
帮助的人:1.3亿
展开全部
函数f(x)在x=1处有极值,则:
f'(1)=0
因:f'(x)=(1/x)+2ax+b
则:f'(1)=1+2a+b=0
得:
b=-2a-1
即:
f(x)=lnx+ax²-(2a+1)x
f'(x)=(1/x)+2ax-2a-1=[(2ax-1)(x-1)]/(x)

【1】
当a=1时,f'(x)=[(2x-1)(x-1)]/(x)
则:f(x)的递增区间是:(0,1/2),(1,+∞),递减区间是:(1/2,1)

【2】
f'(x)=[(2ax-1)(x-1)]/(x)
(1)若a≤0,则函数在区间(0,e]上的最大值是f(1)=0+a-(2a+1)=1,得:a=-2,满足;
(2)若0<a<1/(2e),则f(x)在(0,e]上的最大值是f(1)=0+a-(2a+1)=1,得:a=-2,不满足;
(3)若1/(2e)≤a<1/2,则f(x)在(0,e]上的最大值是:f(1/2a)和f(1)中较大者。
f(1/2a)=-ln(2a)+a(1/2a)²-(2a+1)×(1/2a)<0,
f(1)=0+a-(2a+1)=-a-1<0,不满足;
(4)若a≥1/2,则f(x)在(0,e]上的最大值是:f(1/2a)与f(e)中的较大者。
f(1/2a)<0
f(e)=1+ae²-(2a+1)e=1,得:
a=1/(e-2),满足

综合,得:a=-2或a=1/(e-2)
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
百度网友09da3e2
2013-04-09 · TA获得超过3595个赞
知道大有可为答主
回答量:2067
采纳率:100%
帮助的人:740万
展开全部
解:f(x)=lnx+ax2+bx,x∈(0,+∝)
求导:f‘(x)=1/x+2ax+b
当x=1时函数有极值,则
2a+b+1=0
1).当a=1时,b=-3,则
令f'(x)=1/x+2x-3=(2x^2 -3x+1) /x =0 得解x1=1 ,x2=1/ 2
故 f(x)在(0,1/2 )和(1,+∝)上单调递增,在(1/2,1)单调递减
第2问不太懂
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
王鹏595213150
2013-04-09 · TA获得超过162个赞
知道答主
回答量:65
采纳率:0%
帮助的人:63.7万
展开全部
解:f(x)=lnx+ax2+bx,x∈(0,+∝)
求导:f‘(x)=1/x+2ax+b
当x=1时函数有极值,则
2a+b+1=0
1).当a=1时,b=0,则
f'(x)=1/x+2x≥2√2
故 f(x)在(0,+∝)上单调递增
2).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式