求多项式f(x)=x^5-5x^4+7x^3-2x^2+4x-8在有理数域 实数域和复数域的标准分解式

百度网友bac718a
2013-04-13 · TA获得超过1.3万个赞
知道大有可为答主
回答量:980
采纳率:100%
帮助的人:1641万
展开全部
楼主你好,很高兴为您解答。
由于(f(x),fˊ(x))=1↔f(x)无重根
所以 x^5-5x^4+7x^3-2x^2+4x-8=f(x),
可以得到fˊ(x),
利用辗转相除法得到(f(x),fˊ(x))=(x-2)²,
所以f(x)有重根2,
而且fˊ(x)也有重根2,
f(x)中的2是它的三重根,
用 x-2 去除f(x)连续三次用综合除法
得到商 x²+x+1。
所以f(x)=(x-2)^3*(x^2+x+1)。

希望楼主满意。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式