2个回答
展开全部
f(x)=lnx-ax²+(2-a)x ,x>0
f ′(x)=1/x-2ax+2-a
=[-2ax²+(2-a)x+1]/x
=(2x+1)(1-ax)/x
=(2+1/x)(1-ax)
因为x>0
所以2+1/x>0
当a≤0时,
因为1-ax>0
所以f ′(x)=(2+1/x)(1-ax)>0恒成
所以f(x)在定义域单调递增
当a>0时,
因为2+1/x>0
所以令f ′(x)=(2+1/x)(1-ax)>0得x<1/a
所以当0<x<1/a时f ′(x)>0,f (x)单调递增
当x>1/a时f ′(x)<0,f (x)单调递减
f ′(x)=1/x-2ax+2-a
=[-2ax²+(2-a)x+1]/x
=(2x+1)(1-ax)/x
=(2+1/x)(1-ax)
因为x>0
所以2+1/x>0
当a≤0时,
因为1-ax>0
所以f ′(x)=(2+1/x)(1-ax)>0恒成
所以f(x)在定义域单调递增
当a>0时,
因为2+1/x>0
所以令f ′(x)=(2+1/x)(1-ax)>0得x<1/a
所以当0<x<1/a时f ′(x)>0,f (x)单调递增
当x>1/a时f ′(x)<0,f (x)单调递减
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询