如图,已知在△ABC中,∠ACB=90°,CA=CB,CD⊥AB,垂足是点D,E是BC上的一点,CE=AF

(1)探索△DEF是怎样的三角形,并进行证明(2)证明S四边形CFDE=2/1S△ABC... (1)探索△DEF是怎样的三角形,并进行证明(2)证明S四边形CFDE=2/1S△ABC 展开
吃拿抓卡要
2013-04-15 · TA获得超过9.8万个赞
知道大有可为答主
回答量:9341
采纳率:93%
帮助的人:5453万
展开全部
1)证明:因为∠ACB=90,CA=CB
所以△ABC为等腰直角三角形,∠A=∠B=45
CD⊥AB,根据等腰三角形三线合一
所以D为AB中点,CD也为斜边上中线
因此AD=BD=CD
∠ACD=∠BCD=45
在△ADF和△CDE中
AD=CD,∠A=∠DCE=45,AF=CE
所以△ADF≌△CDE。
因此∠ADF=∠CDE,DF=DE
∠EDF=∠ADC-∠ADF+∠CDE=∠ADC=90
所以△DEF为等腰直角三角形
(2)CF=AC-AF,BE=BC-CE
所以CF=BE
在△BDE和△CDF中
BD=CD,∠B=∠FCD,BE=CF
所以△BDE≌△CDF
则有S△ADF=S△CDE,S△BDE=S△CDF
S△ABC=S△ADF+S△CDE+S△BDE+S△CDF=2(S△CDE+S△CDF)=2S四边形CFDE
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式