设向量a,b是两个不共线的非零向量记向量OA=向量a,向量OB=tb,向量OC=三分之一(a+b)
设向量a,b是两个不共线的非零向量记向量OA=向量a,向量OB=tb,向量OC=三分之一(a+b)那么当实数t为何值时A,B,C三点共线...
设向量a,b是两个不共线的非零向量记向量OA=向量a,向量OB=tb,向量OC=三分之一(a+b)那么当实数t为何值时A,B,C三点共线
展开
4个回答
展开全部
OA=a,OB=tb,OC=(a+b)/3=a/3+tb/3.
当t=2时,A、B、C三点花.
A、B、C三点共线的充要条件是OC=mOA+nOB,m+n=1.
证明:充分性:m+n=1时,n=1-m,
OC=mOA+(1-m)OB=m(OA-OB)+OB
所以OC-OB=mBA,所以BC=mBA,所以A、B、C三点共线.
必要性:A、B、C三点共线时有BC=mBA,所以OC-OB=m(OA-OB)
所以OC=mOA+(1-m)OB,令n=1-m,则有m+n=1.
证毕.
当t=2时,A、B、C三点花.
A、B、C三点共线的充要条件是OC=mOA+nOB,m+n=1.
证明:充分性:m+n=1时,n=1-m,
OC=mOA+(1-m)OB=m(OA-OB)+OB
所以OC-OB=mBA,所以BC=mBA,所以A、B、C三点共线.
必要性:A、B、C三点共线时有BC=mBA,所以OC-OB=m(OA-OB)
所以OC=mOA+(1-m)OB,令n=1-m,则有m+n=1.
证毕.
2013-04-18
展开全部
向量的概念
既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量叫做数量(物理学中叫做标量)。
向量的几何表示
具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。(AB是印刷体,书写体是上面加个→) 有向线段AB的长度叫做向量的模,记作|AB|。 有向线段包含3个因素:起点、方向、长度。 长度等于0的向量叫做零向量,记作0。零向量的方向是任意的;长度等于1个单位长度的向量叫做单位向量。
相等向量与共线向量
长度相等且方向相同的向量叫做相等向量。 两个方向相同或相反的非零向量叫做平行向量,向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,平行向量也叫做共线向量。
向量的运算
加法运算 AB+BC=AC,这种计算法则叫做向量加法的三角形法则。 已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。 对于零向量和任意向量a,有:0+a=a+0=a。 |a+b|≤|a|+|b|。 向量的加法满足所有的加法运算定律。
减法运算 与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。 (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
数乘运算 实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。 设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ + μ)a = λa + μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算。
向量的数量积
已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作ab,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。 ab的几何意义:数量积ab等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。 两个向量的数量积等于它们对应坐标的乘积的和。
既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量叫做数量(物理学中叫做标量)。
向量的几何表示
具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。(AB是印刷体,书写体是上面加个→) 有向线段AB的长度叫做向量的模,记作|AB|。 有向线段包含3个因素:起点、方向、长度。 长度等于0的向量叫做零向量,记作0。零向量的方向是任意的;长度等于1个单位长度的向量叫做单位向量。
相等向量与共线向量
长度相等且方向相同的向量叫做相等向量。 两个方向相同或相反的非零向量叫做平行向量,向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,平行向量也叫做共线向量。
向量的运算
加法运算 AB+BC=AC,这种计算法则叫做向量加法的三角形法则。 已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。 对于零向量和任意向量a,有:0+a=a+0=a。 |a+b|≤|a|+|b|。 向量的加法满足所有的加法运算定律。
减法运算 与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。 (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
数乘运算 实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。 设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ + μ)a = λa + μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算。
向量的数量积
已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作ab,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。 ab的几何意义:数量积ab等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。 两个向量的数量积等于它们对应坐标的乘积的和。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-04-18
展开全部
额,这是嘛??看不大明白···我猜t=2吧,你你这问题就挺2@
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-03-08
展开全部
1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询