△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边

(2009•铁岭)△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线... (2009•铁岭)△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.
(1)如图(a)所示,当点D在线段BC上时.
①求证:△AEB≌△ADC;
②探究四边形BCGE是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;
(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由
展开
百度网友b20b593
高粉答主

2013-04-23 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:3.3万
采纳率:97%
帮助的人:2.4亿
展开全部

∵△ABC和△ADE是等边三角形
∴AB=AC,AE=AD,∠DAE=∠BAC=60°
∴∠DAE-∠BAD=∠BAC-∠BAD
即∠BAE=∠CAD
∴△AEB≌△ADC(SAS)
四边形BCEF是平行四边形,理由如下:
由上得:△AEB≌△ADC
∴∠ABE=∠C=60°
又∠BAC=∠C=60°
∴∠ABE=∠BAC
∴BE∥CF
又EF∥BC
∴四边形BCEF是平行四边形

⑴中的结论仍成立,理由如下:
∵△ABC和△ADE是等边三角形
∴AB=AC,AE=AD,∠BAC=∠DAE=60°
∴∠BAC-∠EAF=∠DAE-∠EAF
即∠BAE=∠DAC
∴△AEB≌△ADC(SAS)
四边形BCEF是平行四边形
由△AEB≌△ADC得:
∠ABE=∠ACD
而∠ACD=180°-∠ACB=120°
∴∠ABE=∠ABC+∠CBE=60°+∠CBE=120°
∴∠CBE=60°
∵∠DCF=∠ACB=60°(对顶角相等)
∴∠DCF=∠CBE
∴CF∥BE
又BC∥EF
∴四边形BCEF是平行四边形

当CD=CB时,四边形BCEF是菱形,理由如下:
由△AEB≌△ADC得:
BE=CD
又CD=CB
∴BE=CB
由上知:四边形BCEF是平行四边形
∴四边形BCEF是菱形
很高兴为您解答,祝你学习进步!
有不明白的可以追问!如果您认可我的回答。希望采纳,谢谢!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式