向量相乘用坐标表示的公式是什么
11个回答
展开全部
向量a(x1,y1),向量b(x2,y2)
向量a点乘向量b等于x1x2+y1y2
扩展资料
实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。
当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当
|λ|
>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍
当|λ|<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的
|λ|倍。
实数p和向量a的点乘乘积是一个数。
数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:①
如果实数λ≠0且λa=λb,那么a=b。②
如果a≠0且λa=μa,那么λ=μ。
需要注意的是:向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。
向量a点乘向量b等于x1x2+y1y2
扩展资料
实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。
当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当
|λ|
>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍
当|λ|<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的
|λ|倍。
实数p和向量a的点乘乘积是一个数。
数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:①
如果实数λ≠0且λa=λb,那么a=b。②
如果a≠0且λa=μa,那么λ=μ。
需要注意的是:向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询