一动圆与圆c1x2+y2+6x+8=0外切,与圆c2x2+y2-6x+8内切,求动圆圆心的轨迹方程

怀念那一片蓝63
2013-05-12 · TA获得超过305个赞
知道答主
回答量:46
采纳率:0%
帮助的人:46.8万
展开全部
x²+y²+6x+8=0
(x+3)²+y²=1
圆心(-3,0)半径=1
x²+y²-6x+8=0
(x-3)²+y²=1
圆心(3,0)半径=1
设所求圆的半径=R 圆心为(x,y)
根号下[(x+3)²+y²]=R+1
根号下[(x-3)²+y²]=R-1
根号下[(x+3)²+y²]-根号下[(x-3)²+y²]=2
圆心(x,y)到(-3,0)的距离比到(3,0)的距离大2
由双曲线定义 可知(-3,0)(3,0)为双曲线焦点 c=3 距离差=|2a|=2 a=1
所以b²=8 双曲线方程为:x²-y²/8=1

引用自:http://zhidao.baidu.com/question/424078338.html
谢谢!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式