高数重积分,还有曲线曲面积分中的对称性是怎么用的啊,

每次都看不懂啊,要满足什么条件才能用啊,怎么用啊,有哪些对称性啊,书上有什么轮换对称性,我都看不懂啊。。。。谁给我细讲一下啊,谢谢啦比如这道题,就不知道怎么做... 每次都看不懂啊,要满足什么条件才能用啊,怎么用啊,有哪些对称性啊,书上有什么轮换对称性,我都看不懂啊。。。。谁给我细讲一下啊,谢谢啦
比如

这道题,就不知道怎么做
展开
lI50lI
2013-05-22 · TA获得超过9297个赞
知道大有可为答主
回答量:3193
采纳率:23%
帮助的人:1380万
展开全部
  • 第一步先看 积分区域

如果积分区域有对称性,那就取它们共同对称的交集

z = √(x² + y²),关于 x轴 和 y轴 都是对称的

而x² + y² = 2ax ==> (x - a)² + y² = a²,只是关于 x轴 对称

于是可用它们共同的对称点,就是关于 x轴 对称

  • 第二步看被积函数的 奇偶性

既然积分关于关于 x轴 对称,有以下性质:

当f(y)为奇函数,∫(- b→b) f(y) dy = 0

当f(y)为偶函数,∫(- b→b) f(y) dy = 2∫(0→b) f(y) dy

先看xy,把x当常数时,y就是奇函数

所以∫∫Σ xy dS = 0

再看yz

∫∫Σ yz dS = ∫∫Σ y√(x² + y²) dS,y√(x² + y²)关于y也是奇函数

于是 = 0

后看z

∫∫Σ z dS = ∫∫Σ √(x² + y²) dS,√(x² + y²)关于y是偶函数

于是 = 2∫∫Σ₁ √(x² + y²) dS,其中Σ₁是Σ在第一挂限的部分

= 2∫∫D₁ √(x² + y²) * √[1 + (∂z/∂x)² + (∂z/∂y)²] dxdy,D₁是D在第一挂限的部分,即Σ₁在xy面的投影

= 2∫∫D₁ √(x² + y²) * √2 dxdy、D₁:x² + y² ≤ 2ax、x ≥ 0

= 2√2∫(0→π/2) dθ ∫(0→2acosθ) r² dr

= 2√2∫(0→π/2) r³/3 ]:(0→2acosθ) dθ

= (2/3)√2∫(0→π/2) 8a³cos³θ dθ

= (16/3)√2a³ * 2/(3 * 1)

= (32/9)√2a³ = 原式


利用对称性往往能有效解决如∫(0→π/2) sinⁿx dx 或 ∫(0→π/2) cosⁿx dx等麻烦的算式


轮换对称性的要求更高

首先「积分区域」要是关于「三个」坐标面都是「对称」的

然后是「被积函数」,任意对调其中两个函数的位置,也对原式没有任何改变

也包括了偶函数的性质

即f(x,y,z) = f(y,z,x) = f(z,x,y)

例如通常的 积分区域 球体 x² + y² + z² = R²,关于三个坐标面都是对称的 或者 正方体 八面体 等

被积函数x² + y² + z²、x²y²z²

那么∫∫Σ f(x,y,z) dS = 8∫∫Σ₁ f(x,y,z) dS,在第一挂限的积分

2574934018
2013-05-22 · TA获得超过4527个赞
知道小有建树答主
回答量:1212
采纳率:85%
帮助的人:492万
展开全部
具体一个题目吧,一般只涉及积分区域对称性和积分函数的对称性
追问
上了图,帮我看看吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式