如图:已知∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE.则∠B=______
2个回答
展开全部
延长BA到F,使AF=AC,连接EF,如图所示:
∵AB+AC=BE,
∴AB+AF=BE,即BF=BE,
∴∠F=∠BEF=
,
∵∠BAD=∠DAC=9°,AD⊥AE,即∠DAE=90°,
∴∠FAE=180°-(∠BAD+∠DAE)=180°-(9°+90°)=81°,
∠CAE=∠DAE-∠DAC=90°-9°=81°,
∴∠FAE=∠CAE,
在△AFE和△ACE中,
∵
,
∴△AFE≌△ACE(SAS),
∴∠F=∠ACE,
又∵∠ACE为△ABC的外角,
∴∠ACE=∠B+∠BAC=∠B+18°,
∴∠F=∠B+18°,
∴∠B+18°=
,
则∠B=48°.
故答案为:48°
∵AB+AC=BE,
∴AB+AF=BE,即BF=BE,
∴∠F=∠BEF=
180°?∠B |
2 |
∵∠BAD=∠DAC=9°,AD⊥AE,即∠DAE=90°,
∴∠FAE=180°-(∠BAD+∠DAE)=180°-(9°+90°)=81°,
∠CAE=∠DAE-∠DAC=90°-9°=81°,
∴∠FAE=∠CAE,
在△AFE和△ACE中,
∵
|
∴△AFE≌△ACE(SAS),
∴∠F=∠ACE,
又∵∠ACE为△ABC的外角,
∴∠ACE=∠B+∠BAC=∠B+18°,
∴∠F=∠B+18°,
∴∠B+18°=
180°?∠B |
2 |
则∠B=48°.
故答案为:48°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询