在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边△ABC的BC、CA边上,且BM=CN,AM、BN交于

在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边△ABC的BC、CA边上,且BM=CN,AM、BN交于点Q,求证:∠BQM=60°.(1)请你完成这道思考题... 在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边△ABC的BC、CA边上,且BM=CN,AM、BN交于点Q,求证:∠BQM=60°.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出许多问题,譬如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?请你选择其中一个问题并画出图形,给出证明. 展开
 我来答
让我久等830
2014-11-28 · 超过81用户采纳过TA的回答
知道答主
回答量:185
采纳率:100%
帮助的人:166万
展开全部
(1)∵在△ABM和△BCN中,
BM=CN
∠B=∠C
AB=BC

∴△ABM≌△BCN(SAS).
∴∠BAM=∠CBN(全等三角形对应角相等).
∵∠QBA+∠CBN=∠CBA=60°(已知),
∴∠QBA+∠BAM=60°(等量代换).
∴∠BQM=60°.

(2)①是.
∵∠BQM=60°(已知),
∴∠QBA+∠BAM=60°.
∵∠QBA+∠CBN=60°(由(1)得出的结论),
∴∠BAM=∠CBN(等量代换).
在△ABM和△BCN中,
∠ABM=∠BCN
AB=AC
∠BAM=∠CBN

∴△ABM≌△BCN(ASA).
∴BM=CN(全等三角形对应边相等).
②成立.
∵BM=CN(①的结论),
∴CM=AN(等量代换).
∵AB=AC,∠ACM=∠BAN=180°-60°=120°(平角的性质),
在△BAN和△ACM中,
BA=AC
∠BAN=∠ACM
AN=CM

∴△BAN≌△ACM(SAS).
∴∠NBA=∠MAC,
∴∠BQM=∠BNA+∠NAQ=180°-∠NCB-(∠CBN-∠NAQ)=180°-60°-60°=60°(三角形内角和定理).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式