已知一元二次方程x2+ax+a-2=0.(1)求证:不论a为何实数,此方程总有两个不相等的实数根;(2)设a<0,

已知一元二次方程x2+ax+a-2=0.(1)求证:不论a为何实数,此方程总有两个不相等的实数根;(2)设a<0,当二次函数y=x2+ax+a-2的图象与x轴的两个交点的... 已知一元二次方程x2+ax+a-2=0.(1)求证:不论a为何实数,此方程总有两个不相等的实数根;(2)设a<0,当二次函数y=x2+ax+a-2的图象与x轴的两个交点的距离为13时,求出此二次函数的解析式;(3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为3132?若存在求出P点坐标,若不存在请说明理由. 展开
 我来答
佳佳Mwk6
推荐于2016-10-12 · TA获得超过176个赞
知道答主
回答量:134
采纳率:50%
帮助的人:140万
展开全部
(1)证明:∵△=a2-4(a-2)=a2-4a+8=(a-2)2+4>0,
∴不论a为何实数,此方程总有两个不相等的实数根.

(2)解:设x1、x2是y=x2+ax+a-2=0的两个根,则x1+x2=-a,x1?x2=a-2,
∵两交点的距离是
13

∴|x1-x2|=
(x1?x2)2
=
13

即:(x1-x22=13,
变形为:(x1+x22-4x1?x2=13,
∴(-a)2-4(a-2)=13,
整理得:(a-5)(a+1)=0,
解方程得:a=5或-1,
又∵a<0,
∴a=-1,
∴此二次函数的解析式为y=x2-x-3.

(3)解:设点P的坐标为(x0,y0),
∵函数图象与x轴的两个交点间的距离等于
13

∴AB=
13

∴S△PAB=
1
2
AB?|y0|=
3
13
2

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消