如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF、AE、AF,过A作AH⊥EF于点H.若EF=BE+DF
如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF、AE、AF,过A作AH⊥EF于点H.若EF=BE+DF,那么下列结论:①AE平分∠BEF;②...
如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF、AE、AF,过A作AH⊥EF于点H.若EF=BE+DF,那么下列结论:①AE平分∠BEF;②FH=FD;③∠EAF=45°;④S△EAF=S△ABE+S△ADF;⑤△CEF的周长为2.其中正确结论的个数是( )A.2B.3C.4D.5
展开
展开全部
解:如图:把△ABE绕点A逆时针旋转90度,得到△ADG,则△ABE≌△ADG,∠EAG=∠BAD=90°,
∴∠ABE=∠ADG=90°,AE=AG,BE=DG,
∴∠FDG=∠FDA+∠ADG=90°+90°=180°,
∴F、D、G三点共线.
∵EF=BE+DF,
∴EF=DG+DF=GF.
∵在△AGF与△AEF中,
,
∴△AGF≌△AEF(SSS),
∴∠GAF=∠EAF,∠1=∠2,
∵∠GAF+∠EAF=∠EAG=90°,
∴∠EAF=
×90°=45°,故③正确;
∵∠1=∠2,AD⊥FG于D,AH⊥EF于H,
∴AD=AH,
∵AD=AB,
∴AH=AB,
又∵AH⊥EF于H,AB⊥BC于B,
∴AE平分∠BEF,故①正确;
∵AE平分∠BEF,
∴∠AEB=∠AEH,
∵∠AEB+∠BAE=90°,∠AEH+∠HAE=90°,
∴∠BAE=∠HAE,
又∵EH⊥AH于H,EB⊥AB于B,
∴BE=HE,
∵BE=DG,
∴HE=DG,
∵EF=HE+FH,GF=DG+FD,EF=GF,
∴FH=FD,故②正确;
∵△AEF≌△AGF,
∴S△EAF=S△GAF.
∵△ABE≌△ADG,
∴S△GAF=S△ADG+S△ADFS△ABE+S△ADF,
∴S△EAF=S△ABE+S△ADF,故④正确;
∵EF=HE+FH,BE=HE,FH=FD,
∴EF=BE+FD,
∴△CEF的周长=EF+EC+CF=BE+FD+EC+CF=BC+CD=2AB=2,故⑤正确.
故选D.
∴∠ABE=∠ADG=90°,AE=AG,BE=DG,
∴∠FDG=∠FDA+∠ADG=90°+90°=180°,
∴F、D、G三点共线.
∵EF=BE+DF,
∴EF=DG+DF=GF.
∵在△AGF与△AEF中,
|
∴△AGF≌△AEF(SSS),
∴∠GAF=∠EAF,∠1=∠2,
∵∠GAF+∠EAF=∠EAG=90°,
∴∠EAF=
1 |
2 |
∵∠1=∠2,AD⊥FG于D,AH⊥EF于H,
∴AD=AH,
∵AD=AB,
∴AH=AB,
又∵AH⊥EF于H,AB⊥BC于B,
∴AE平分∠BEF,故①正确;
∵AE平分∠BEF,
∴∠AEB=∠AEH,
∵∠AEB+∠BAE=90°,∠AEH+∠HAE=90°,
∴∠BAE=∠HAE,
又∵EH⊥AH于H,EB⊥AB于B,
∴BE=HE,
∵BE=DG,
∴HE=DG,
∵EF=HE+FH,GF=DG+FD,EF=GF,
∴FH=FD,故②正确;
∵△AEF≌△AGF,
∴S△EAF=S△GAF.
∵△ABE≌△ADG,
∴S△GAF=S△ADG+S△ADFS△ABE+S△ADF,
∴S△EAF=S△ABE+S△ADF,故④正确;
∵EF=HE+FH,BE=HE,FH=FD,
∴EF=BE+FD,
∴△CEF的周长=EF+EC+CF=BE+FD+EC+CF=BC+CD=2AB=2,故⑤正确.
故选D.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询