已知圆C:(x–a)的平方+(y–2)的平方=4与直线l:x+y–3=0且直线l被圆C截得的弦长为
已知圆C:(x–a)的平方+(y–2)的平方=4与直线l:x+y–3=0且直线l被圆C截得的弦长为2倍根号2求a的值...
已知圆C:(x–a)的平方+(y–2)的平方=4与直线l:x+y–3=0且直线l被圆C截得的弦长为2倍根号2求a的值
展开
展开全部
let C cut l at A(x1,y1), B(x2,y2)
C:(x-a)^2+(y-2)^2=4 (1)
l: x+y-3=0 (2)
sub (2) into (1)
(x-a)^2+(-x+1)^2=4
2x^2- (2a+2)x + a^2-3 = 0
x1+x2 = a+1
x1x2 = (a^2-3)/2
(x1-x2)^2 = (x1+x2)^2 - 4x1x2
= (a+1)^2 -2(a^2-3)
= -a^2+2a +7 (3)
Similarly
sub (2) into (1)
(3-y-a)^2+(y-2)^2=4
2y^2 + (2(a-3) -4)y + (a-3)^2+4 =0
2y^2 + (2a-10)y + (a-3)^2 +4=0
y1+y2 = -a+5
y1y2 = [(a-3)^2+4]/2
(y1-y2)^2 = (-a+5)^2 - 2[(a-3)^2+4]
= -a^2+2a-1 (4)
弦长为2√2
=>
(x1-x2)^2 +(y1-y2)^2 =8
-a^2+2a +7 -a^2+2a-1 =8
-2a^2+4a-2=0
a^2-2a+1=0
a=1
C:(x-a)^2+(y-2)^2=4 (1)
l: x+y-3=0 (2)
sub (2) into (1)
(x-a)^2+(-x+1)^2=4
2x^2- (2a+2)x + a^2-3 = 0
x1+x2 = a+1
x1x2 = (a^2-3)/2
(x1-x2)^2 = (x1+x2)^2 - 4x1x2
= (a+1)^2 -2(a^2-3)
= -a^2+2a +7 (3)
Similarly
sub (2) into (1)
(3-y-a)^2+(y-2)^2=4
2y^2 + (2(a-3) -4)y + (a-3)^2+4 =0
2y^2 + (2a-10)y + (a-3)^2 +4=0
y1+y2 = -a+5
y1y2 = [(a-3)^2+4]/2
(y1-y2)^2 = (-a+5)^2 - 2[(a-3)^2+4]
= -a^2+2a-1 (4)
弦长为2√2
=>
(x1-x2)^2 +(y1-y2)^2 =8
-a^2+2a +7 -a^2+2a-1 =8
-2a^2+4a-2=0
a^2-2a+1=0
a=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询