在等边三角形ABC的两边AB,AC所在直线上分别有两点M,N,D为三角形ABC外一点,且角MDN=60度,角BDC=120度
4个回答
展开全部
(1)如果DM=DN,∠DMN=∠DNM,因为BD=DC,那么∠DBC=∠DCB=30°,也就有∠MBD=∠NCD=60+30=90°,直角三角形MBD、NCD中,因为BD=CD,DM=DN,根据HL定理,两三角形全等.那么BM=NC,∠BMD=∠DNC=60°,三角形NCD中,∠NDC=30°,DN=2NC,在三角形DNM中,DM=DN,∠MDN=60°,因此三角形DMN是个等边三角形,因此MN=DN=2NC=NC+BM,三角形AMN的周长Q=AM+AN+MN=AM+AN+MB+NC=AB+AC=2AB,三角形ABC的周长L=3AB,因此Q:L=2:3.
(2)如果DM≠DN,我们可通过构建全等三角形来实现线段的转换.延长AC至E,使CE=BM,连接DE.(1)中我们已经得出,∠MBD=∠NCD=90°,那么三角形MBD和ECD中,有了一组直角,MB=CE,BD=DC,因此两三角形全等,那么DM=DE,∠BDM=∠CDE,∠EDN=∠BDC-∠MDN=60°.三角形MDN和EDN中,有DM=DE,∠EDN=∠MDN=60°,有一条公共边,因此两三角形全等,MN=NE,至此我们把BM转换成了CE,把MN转换成了NE,因为NE=CN+CE,因此NM=BM+CN.Q与L的关系的求法同(1),得出的结果是一样的.
(3)我们可通过构建全等三角形来实现线段的转换,思路同(2)过D作∠CDN=∠MDB,三角形BDM和CDH中,由(1)中已经得出的∠DCH=∠MBD=90°,我们做的角∠BDM=∠CDH,BD=CD因此两三角形全等(ASA).那么BM=CH,DM=DH,三角形MDN和NDH中,已知的条件有MD=DH,一条公共边ND,要想证得两三角形全等就需要知道∠MDN=∠HDN,因为∠CDH=∠MDB,因此∠MDH=∠BDC=120°,因为∠MDN=60°,那么∠NDH=120°-60°=60°,因此∠MDN=∠NDH,这样就构成了两三角形全等的条件.三角形MDN和DNH就全等了.那么NM=NH=AN+AC-BM,三角形AMN的周长Q=AN+AM+MN=AN+AB+BM+AN+AC-BM=2AN+2AB.因为AN=x,AB=
1
3
L,因此三角形AMN的周长Q=2x+
2
3
L.
解答:解:(1)如图,BM、NC、MN之间的数量关系BM+NC=MN.
此时
Q
L
=
2
3
.
(2)猜想:结论仍然成立.
证明:如图,延长AC至E,使CE=BM,连接DE.
∵BD=CD,且∠BDC=120°,
∴∠DBC=∠DCB=30°.
又∵△ABC是等边三角形,
∴∠MBD=∠NCD=90°.
在△MBD与△ECD中:
BM=CE
∠MBD=∠ECD
BD=DC
∴△MBD≌△ECD(SAS).
∴DM=DE,∠BDM=∠CDE.
∴∠EDN=∠BDC-∠MDN=60°.
在△MDN与△EDN中:
DM=DE
∠MDN=∠EDN
DN=DN
,
∴△MDN≌△EDN(SAS).
∴MN=NE=NC+BM.
△AMN的周长Q=AM+AN+MN
=AM+AN+(NC+BM)
=(AM+BM)+(AN+NC)
=AB+AC
=2AB.
而等边△ABC的周长L=3AB.
∴
Q
L
=
2AB
3AB
=
2
3
.
(3)如图,当M、N分别在AB、CA的延长线上时,若AN=x,
则Q=2x+
2
3
L(用x、L表示).
(2)如果DM≠DN,我们可通过构建全等三角形来实现线段的转换.延长AC至E,使CE=BM,连接DE.(1)中我们已经得出,∠MBD=∠NCD=90°,那么三角形MBD和ECD中,有了一组直角,MB=CE,BD=DC,因此两三角形全等,那么DM=DE,∠BDM=∠CDE,∠EDN=∠BDC-∠MDN=60°.三角形MDN和EDN中,有DM=DE,∠EDN=∠MDN=60°,有一条公共边,因此两三角形全等,MN=NE,至此我们把BM转换成了CE,把MN转换成了NE,因为NE=CN+CE,因此NM=BM+CN.Q与L的关系的求法同(1),得出的结果是一样的.
(3)我们可通过构建全等三角形来实现线段的转换,思路同(2)过D作∠CDN=∠MDB,三角形BDM和CDH中,由(1)中已经得出的∠DCH=∠MBD=90°,我们做的角∠BDM=∠CDH,BD=CD因此两三角形全等(ASA).那么BM=CH,DM=DH,三角形MDN和NDH中,已知的条件有MD=DH,一条公共边ND,要想证得两三角形全等就需要知道∠MDN=∠HDN,因为∠CDH=∠MDB,因此∠MDH=∠BDC=120°,因为∠MDN=60°,那么∠NDH=120°-60°=60°,因此∠MDN=∠NDH,这样就构成了两三角形全等的条件.三角形MDN和DNH就全等了.那么NM=NH=AN+AC-BM,三角形AMN的周长Q=AN+AM+MN=AN+AB+BM+AN+AC-BM=2AN+2AB.因为AN=x,AB=
1
3
L,因此三角形AMN的周长Q=2x+
2
3
L.
解答:解:(1)如图,BM、NC、MN之间的数量关系BM+NC=MN.
此时
Q
L
=
2
3
.
(2)猜想:结论仍然成立.
证明:如图,延长AC至E,使CE=BM,连接DE.
∵BD=CD,且∠BDC=120°,
∴∠DBC=∠DCB=30°.
又∵△ABC是等边三角形,
∴∠MBD=∠NCD=90°.
在△MBD与△ECD中:
BM=CE
∠MBD=∠ECD
BD=DC
∴△MBD≌△ECD(SAS).
∴DM=DE,∠BDM=∠CDE.
∴∠EDN=∠BDC-∠MDN=60°.
在△MDN与△EDN中:
DM=DE
∠MDN=∠EDN
DN=DN
,
∴△MDN≌△EDN(SAS).
∴MN=NE=NC+BM.
△AMN的周长Q=AM+AN+MN
=AM+AN+(NC+BM)
=(AM+BM)+(AN+NC)
=AB+AC
=2AB.
而等边△ABC的周长L=3AB.
∴
Q
L
=
2AB
3AB
=
2
3
.
(3)如图,当M、N分别在AB、CA的延长线上时,若AN=x,
则Q=2x+
2
3
L(用x、L表示).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)如图,BM、NC、MN之间的数量关系BM+NC=MN.
此时
Q L = 2/3
(2)猜想:结论仍然成立.
证明:如图,延长AC至E,使CE=BM,连接DE.
∵BD=CD,且∠BDC=120°,
∴∠DBC=∠DCB=30°.
又△ABC是等边三角形,
∴∠MBD=∠NCD=90°.
在△MBD与△ECD中:
BM=CE
∠MBD=∠ECD
BD=DC
∴△MBD≌△ECD(SAS).
∴DM=DE,∠BDM=∠CDE.
∴∠EDN=∠BDC-∠MDN=60°.
在△MDN与△EDN中:
DM=DE
∠MDN=∠EDN
DN=DN
,
∴△MDN≌△EDN(SAS).
∴MN=NE=NC+BM.
△AMN的周长Q=AM+AN+MN
=AM+AN+(NC+BM)
=(AM+BM)+(AN+NC)
=AB+AC
=2AB.
而等边△ABC的周长L=3AB.
∴
QL=2AB 3AB = 2/3
(3)如图,当M、N分别在AB、CA的延长线上时,若AN=x,
则Q=2x+ 2/3L
此时
Q L = 2/3
(2)猜想:结论仍然成立.
证明:如图,延长AC至E,使CE=BM,连接DE.
∵BD=CD,且∠BDC=120°,
∴∠DBC=∠DCB=30°.
又△ABC是等边三角形,
∴∠MBD=∠NCD=90°.
在△MBD与△ECD中:
BM=CE
∠MBD=∠ECD
BD=DC
∴△MBD≌△ECD(SAS).
∴DM=DE,∠BDM=∠CDE.
∴∠EDN=∠BDC-∠MDN=60°.
在△MDN与△EDN中:
DM=DE
∠MDN=∠EDN
DN=DN
,
∴△MDN≌△EDN(SAS).
∴MN=NE=NC+BM.
△AMN的周长Q=AM+AN+MN
=AM+AN+(NC+BM)
=(AM+BM)+(AN+NC)
=AB+AC
=2AB.
而等边△ABC的周长L=3AB.
∴
QL=2AB 3AB = 2/3
(3)如图,当M、N分别在AB、CA的延长线上时,若AN=x,
则Q=2x+ 2/3L
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-05-28
展开全部
你想问的是?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询