展开全部
正好做到这一题,我是这么做的
∮(c)2i/(z^2+1)dz=∮(c1)2i/(z+i)/(z-i)+∮(c2)2i/(z-i)/(z+i)
c1,c2为C内分别只包含z1=i、z2=-i的简单闭曲线,且分别f(z)=2i/(z+i),f(z)=2i/(z-i),所以f(z)分别处处解析,符合柯西公式
所以∮(c1)2i/(z+i)/(z-i)=2ipi*(2i/2i)=2ipi
∮(c2)2i/(z-i)/(z+i)=2ipi*(2i/(-2i))=-2ipi
所以∮(c)2i/(z^2+1)dz=0
∮(c)2i/(z^2+1)dz=∮(c1)2i/(z+i)/(z-i)+∮(c2)2i/(z-i)/(z+i)
c1,c2为C内分别只包含z1=i、z2=-i的简单闭曲线,且分别f(z)=2i/(z+i),f(z)=2i/(z-i),所以f(z)分别处处解析,符合柯西公式
所以∮(c1)2i/(z+i)/(z-i)=2ipi*(2i/2i)=2ipi
∮(c2)2i/(z-i)/(z+i)=2ipi*(2i/(-2i))=-2ipi
所以∮(c)2i/(z^2+1)dz=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询