已知函数f(x)=(sinx+cosx)²+2cos²x
4个回答
展开全部
已知函数f(x)=(sinx+cosx)²+2cos²x;1。求f(x)的最大值及最大值时自变量x的集合。2。求函数的单调区间
解:1。f(x)=(sinx+cosx)²+2cos²x=1+sin2x+(1+cos2x)=(sin2x+cos2x)+2
=(√2)sin(2x+π/4)+2;
当2x+π/4=π/2+2kπ,即x=(1/2)[π/2-π/4+2kπ]=kπ+π/8时f(x)获得最大值3;
2。由-π/2+2kπ≦2x+π/4≦π/2+2kπ,得单增区间为:-3π/8+kπ≦x≦π/8+kπ;
由π/2+2kπ≦2x+π/4≦3π/2+2kπ,得单减区间为:π/8+kπ≦x≦5π/8+kπ;k∈Z;
解:1。f(x)=(sinx+cosx)²+2cos²x=1+sin2x+(1+cos2x)=(sin2x+cos2x)+2
=(√2)sin(2x+π/4)+2;
当2x+π/4=π/2+2kπ,即x=(1/2)[π/2-π/4+2kπ]=kπ+π/8时f(x)获得最大值3;
2。由-π/2+2kπ≦2x+π/4≦π/2+2kπ,得单增区间为:-3π/8+kπ≦x≦π/8+kπ;
由π/2+2kπ≦2x+π/4≦3π/2+2kπ,得单减区间为:π/8+kπ≦x≦5π/8+kπ;k∈Z;
展开全部
f(x)=1+2sinxcosx+cos2x-1=sin2x+cos2x=√2sin(2x+π/4)再根据正弦函数求最值和单调区间,一般考试里面都有一个这样的题,希望能加强训练。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)
f(x)=(sinx+cosx)²+2cos²x
=sin²x+cos²x+2sinxcosx+2cos²x
=1+2cos²x+2sinxcosx
=cos2x+1+1+sin2x
=√2sin(2x+π/4)+2
∴当2x+π/4=π/2+2kπ时,可取得最大值:2+√2
解得:x=π/8+kπ,k∈Z
∴当2x+π/4=3π/2+2kπ时,可取得最小值:2-√2
解得:x=5π/8+kπ,k∈Z
(2)
-π/2+2kπ-π/4≤2x≤π/2+2kπ-π/4,k∈Z
-3π/4+2kπ≤2x≤π/4+2kπ,k∈Z
-3π/8+kπ≤x≤π/8+kπ,k∈Z
∴单增区间为:【-3π/8,π/8】,k∈Z
π/2+2kπ≤2x+π/4≤3π/2+2kπ,k∈Z
π/4+2kπ≤2x≤5π/4+2kπ,k∈Z
π/8+kπ≤x≤5π/8+kπ,K∈Z
∴单减区间为:【π/8,5π/8】,K∈Z
f(x)=(sinx+cosx)²+2cos²x
=sin²x+cos²x+2sinxcosx+2cos²x
=1+2cos²x+2sinxcosx
=cos2x+1+1+sin2x
=√2sin(2x+π/4)+2
∴当2x+π/4=π/2+2kπ时,可取得最大值:2+√2
解得:x=π/8+kπ,k∈Z
∴当2x+π/4=3π/2+2kπ时,可取得最小值:2-√2
解得:x=5π/8+kπ,k∈Z
(2)
-π/2+2kπ-π/4≤2x≤π/2+2kπ-π/4,k∈Z
-3π/4+2kπ≤2x≤π/4+2kπ,k∈Z
-3π/8+kπ≤x≤π/8+kπ,k∈Z
∴单增区间为:【-3π/8,π/8】,k∈Z
π/2+2kπ≤2x+π/4≤3π/2+2kπ,k∈Z
π/4+2kπ≤2x≤5π/4+2kπ,k∈Z
π/8+kπ≤x≤5π/8+kπ,K∈Z
∴单减区间为:【π/8,5π/8】,K∈Z
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先要求f(x)的导函数,然后再令导函数为0就有x的值,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询