已知数列{an}中,a1=2,a2=4,a(n+1)=3an-2a(n-1) (1) 证明:数列{a(n+1)-an}是等比数列,并求出{an}

已知数列{an}中,a1=2,a2=4,a(n+1)=3an-2a(n-1)(1)证明:数列{a(n+1)-an}是等比数列,并求出{an}通项公式。会证等比,但是an的... 已知数列{an}中,a1=2,a2=4,a(n+1)=3an-2a(n-1) (1) 证明:数列{a(n+1)-an}是等比数列,并求出{an}通项公式。
会证等比,但是an的通项公式怎么求? 我怎么求的是2^(n+1) .....
哪里出错了?
由题
a2-a1=2
a3-a2=4
a4-a3=8
....
an-a(n-1)=2^n
累加
所以an-a1=2+4+8+...+2^n .
然后 an-a1=2^(n+1)-2 因为a1=2 所以an=2^(n+1) ???哪里错了
展开
xuzhouliuying
高粉答主

2013-06-06 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
你错在2+4+...+2^(n-1),而不是2+4+...+2ⁿ,共n-1项相加,不是n项。

证:
n≥2时,
a(n+1)=3an-2a(n-1)
a(n+1)-an=2an-2a(n-1)=2[an-a(n-1)]
[a(n+1)-an]/[an-a(n-1)]=2,为定值。
a2-a1=4-2=2,数列{a(n+1)-an}是以2为首项,2为公比的等比数列。
a(n+1)-an=2ⁿ
an-a(n-1)=2^(n-1)
a(n-1)-a(n-2)=2^(n-2)
…………
a2-a1=2
累加
an-a1=2+2²+...+2^(n-1)=2×[2^(n-1) -1]/(2-1)=2ⁿ-2
an=a1+2ⁿ-2=2+2ⁿ-2=2ⁿ
数列{an}的通项公式为an=2ⁿ。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式