在正三棱柱ABC-A1B1C1中,AB=AA1,D是BC上的一点,且AD垂直于C1D.求证A1B平行于平面AC1D
2个回答
展开全部
证明:因为ABC-A1B1C1是正三棱柱,
所以CC1⊥平面ABC,所以CC1⊥AD.又AD⊥C1D,CC1∩C1D=C1,所以AD⊥平面BCC1B1,
所以AD⊥BC,所以D是BC的中点.
连接A1C,设与AC1相交于点E,则点E为A1C的中点.
连接DE,则在 中,因为D、E分别是BC、A1C的中点,所以A1B∥DE,又DE在平面AC1D内,A1B不在平面AC1D内,所以A1B∥平面AC1D.
所以CC1⊥平面ABC,所以CC1⊥AD.又AD⊥C1D,CC1∩C1D=C1,所以AD⊥平面BCC1B1,
所以AD⊥BC,所以D是BC的中点.
连接A1C,设与AC1相交于点E,则点E为A1C的中点.
连接DE,则在 中,因为D、E分别是BC、A1C的中点,所以A1B∥DE,又DE在平面AC1D内,A1B不在平面AC1D内,所以A1B∥平面AC1D.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询