3个回答
2013-06-09
展开全部
化函数f(x)=x^2+2ax+2的解析式为:f(x)=(x+a)^2+2-a^2二次函数y=(x+a)^2+2-a^2的图象是开口向上,对称轴为x=-a的抛物线,这个二次函数的单调递增区间是[-a,+∞),单调递减区间是(-∞,-a]要函数f(x)=x^2+2ax+2在[-5,5]上是单调函数,那么区间[-5,5]是(-∞,-a]的子集或区间[-5,5]是[-a,+∞)的子集,求出a<=-5或a>=5所以实数a的取值范围是(-∞,-5]∪[5,+∞)
2013-06-09
展开全部
f(x)=x方+2ax+2,由图像可得f(x)的单调递增区间为【-a,+∞)单调递减区间为(-∞,-a】使y=f(x)在区间【-5,5】上是单调函数,则【-5,5】在【-a,+∞)或者(-∞,-a】内则-a≤-5或者-a≥5a≤-5或者a≥5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-06-09
展开全部
解要使y=f(x)在区间【-5,5】上是单调函数,则要求区间【-5,5】在对称轴的一侧即对称轴-a<=-5或-a>=5得实数a的取值范围为a>=5或a<=-5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询