数学导数题目 急

已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.(1)求实数m的值;(2)已知结论:若函数f(x)=ln(x+1)+mx在区间(a,b)内导数... 已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.
(1)求实数m的值;
(2)已知结论:若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在x0∈(a,b),使得f′(x0)=f(b)-f(a)/b-a
.试用这个结论证明:若-1<x1<x2,函数g(x)=f(x1)-f(x2) (x-x1)+f(x1)/x1-x2 /,则对任意x∈(x1,x2),都有f(x)>g(x);
(3)已知正数λ1,λ2,…,λn,满足λ1+λ2+…+λn=1,求证:当n≥2,n∈N时,对任意大于-1,且互不相等的实数x1,x2,…,xn,都有f(λ1x1+λ2x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).

2,3两步怎么做
展开
匿名用户
2013-06-09
展开全部

(1)解:求导函数f′(x)=1/(x+1) +m.

∵当x=0时,函数f(x)取得极大值
∴f'(0)=0,得m=-1,此时f′(x)=-x/(x+1) .

当x∈(-1,0)时,f'(x)>0,函数f(x)在区间(-1,0)上单调递增;
当x∈(0,+∞)时,f'(x)<0,函数f(x)在区间(0,+∞)上单调递减.
∴函数f(x)在x=0处取得极大值,故m=-1

第3问的答案字有点小,放大后可看清楚

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式