已知函数f(x)=a-2/2^x+1
(1).判断函数f(x)的单调性,并证明;(2).若f(x)为奇函数,求实数a的值希望能帮忙解决谢谢了~~...
(1).判断函数f(x)的单调性,并证明;(2).若f(x)为奇函数,求实数a的值
希望能帮忙解决 谢谢了~~ 展开
希望能帮忙解决 谢谢了~~ 展开
1个回答
展开全部
(1)
f(x)在(-∞,+∞)上是增函数
证明:(用定义法证明函数的单调性)
任取x1,x2∈R,且x1<x2
则f(x1)-f(x2)=a-[2/(2^x1+1)]-a+[2/(2^x2+1)]=[2(2^x1-2^x2)]/[(2^x1+1)(2^x2+1)]
∵y=2^x在(-∞,+∞)上递增,而x1<x2
∴2^x1<2^x2
∴(2^x1)-(2^x2)<0
又(2^x1+1)(2^x2+1)>0
∴f(x1)-f(x2)<0
即f(x1)<f(x2)
∴f(x)在(-∞,+∞)上是增函数
(2)
f(x)为奇函数,则f(0)=a-[2/(2^0+1)]=a-1=0
∴a=1
经检验,a=1时,f(x)是奇函数.
希望能帮到你!望采纳!
f(x)在(-∞,+∞)上是增函数
证明:(用定义法证明函数的单调性)
任取x1,x2∈R,且x1<x2
则f(x1)-f(x2)=a-[2/(2^x1+1)]-a+[2/(2^x2+1)]=[2(2^x1-2^x2)]/[(2^x1+1)(2^x2+1)]
∵y=2^x在(-∞,+∞)上递增,而x1<x2
∴2^x1<2^x2
∴(2^x1)-(2^x2)<0
又(2^x1+1)(2^x2+1)>0
∴f(x1)-f(x2)<0
即f(x1)<f(x2)
∴f(x)在(-∞,+∞)上是增函数
(2)
f(x)为奇函数,则f(0)=a-[2/(2^0+1)]=a-1=0
∴a=1
经检验,a=1时,f(x)是奇函数.
希望能帮到你!望采纳!
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询