2个回答
展开全部
实数abc
a+b+c=a^2+b^2+c^2移项,得:
a^2+b^2+c^2-a-b-c=0两遍加3/4,得:
a^2-a+1/4+b^2-b+1/4+c^2-c+1/4=3/4构成平方,得:
(a-1/2)^2+(b-1/2)^2+(c-1/2)^2=3/4 [1]式子
需要用到√[(a^2+b^2+c^2)/3]>=(a+b+c)/3变形:(此后证明在结尾)
(a^2+b^2+c^2)/3>=[(a+b+c)/3]^2再变形:
(a^2+b^2+c^2)>=3*[(a+b+c)/3]^2把[1]式子套用公式得:
3/4=(a-1/2)^2+(b-1/2)^2+(c-1/2)^2>=3*[(a-1/2+b-1/2+c-1/2)/3]^2变形:
3/4>=[(a+b+c-3/2)^2]/3再变形:
(a+b+c-3/2)^2<=9/4
所以a+b+c<=3/2+3/2=3即为所求。
若有错误,请多多指教~
对了,还有证明:√[(a^2+b^2+c^2)/3]>=(a+b+c)/3
证明:因为(a-b)^2+(b-c)^2+(c-a)^2>=0
展开2a^2+2b^2+2c^2-2ab-2bc-2ac>=0
2a^2+2b^2+2c^2>=2ab+2bc+2ac
同时加a^2+b^2+c^2
a^2+b^2+c^2+2a^2+2b^2+2c^2>=a^2+b^2+c^2+2ab+2bc+2ac
3(a^2+b^2+c^2)>=(a+b+c)^2
(a^2+b^2+c^2)/3>=(a+b+c)^2/9
若a+b+c<0, 则√[(a^2+b^2+c^2)/3]>(a+b+c)/3肯定成立
若a+b+c>=0则开方
√[(a^2+b^2+c^2)/3]>=(a+b+c)/3 综上
√[(a^2+b^2+c^2)/3]>=(a+b+c)/3
当a=b=c且大于0时取到
a+b+c=a^2+b^2+c^2移项,得:
a^2+b^2+c^2-a-b-c=0两遍加3/4,得:
a^2-a+1/4+b^2-b+1/4+c^2-c+1/4=3/4构成平方,得:
(a-1/2)^2+(b-1/2)^2+(c-1/2)^2=3/4 [1]式子
需要用到√[(a^2+b^2+c^2)/3]>=(a+b+c)/3变形:(此后证明在结尾)
(a^2+b^2+c^2)/3>=[(a+b+c)/3]^2再变形:
(a^2+b^2+c^2)>=3*[(a+b+c)/3]^2把[1]式子套用公式得:
3/4=(a-1/2)^2+(b-1/2)^2+(c-1/2)^2>=3*[(a-1/2+b-1/2+c-1/2)/3]^2变形:
3/4>=[(a+b+c-3/2)^2]/3再变形:
(a+b+c-3/2)^2<=9/4
所以a+b+c<=3/2+3/2=3即为所求。
若有错误,请多多指教~
对了,还有证明:√[(a^2+b^2+c^2)/3]>=(a+b+c)/3
证明:因为(a-b)^2+(b-c)^2+(c-a)^2>=0
展开2a^2+2b^2+2c^2-2ab-2bc-2ac>=0
2a^2+2b^2+2c^2>=2ab+2bc+2ac
同时加a^2+b^2+c^2
a^2+b^2+c^2+2a^2+2b^2+2c^2>=a^2+b^2+c^2+2ab+2bc+2ac
3(a^2+b^2+c^2)>=(a+b+c)^2
(a^2+b^2+c^2)/3>=(a+b+c)^2/9
若a+b+c<0, 则√[(a^2+b^2+c^2)/3]>(a+b+c)/3肯定成立
若a+b+c>=0则开方
√[(a^2+b^2+c^2)/3]>=(a+b+c)/3 综上
√[(a^2+b^2+c^2)/3]>=(a+b+c)/3
当a=b=c且大于0时取到
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |