如图,RT△ABC中,∠C=90°,AC=BC,AB=2+2√3

如图2,在Rt△ABC中,放入正三角形DEF和正三角形EGH,使得DE、EG在边AB上,F、H分别在边CA、CB上,求这两个三角形面积和的最大值和最小值,并说明理由... 如图2,在Rt△ABC中,放入正三角形DEF和正三角形EGH,使得DE、EG在边AB上,F、H分别在边CA、CB上,求这两个三角形面积和的最大值和最小值,并说明理由 展开
无稽居士
科技发烧友

2013-06-12 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.4万
采纳率:81%
帮助的人:2285万
展开全部
按照【龘屲里旳孩孓】的分析,我只计算出最终的结果,面积和
最大值=8√3/3
最小值=2√3
龘屲裡旳孩孓
2013-06-12 · TA获得超过104个赞
知道答主
回答量:18
采纳率:0%
帮助的人:19.7万
展开全部
最大值,点F和C重合,且三角形HEG存在时,最小值,2个三角形一样大,这种题目就这样,很死板的,且DE+EG必为定值。无论该三角形是否特殊,你也可以从特殊发现规律,再到一般,一般情况你就可以很简单的罗列出他们之间的关系。

下面讲解法,(最下面那张图)字母和你不一样的,HI,GJ为BF垂线,设BI/HI=k,ID=x,JE=y,三线合一,GI=ID,DJ=JE,HI=根号三x,GJ=根号三y,那么BI=k根号三x,JF=k根号三y,由BF=BI+ID+DJ+JF
可得,k根号三x+k根号三y+x+y=2+2根号三 ,解得x+y=2+2根号3/(根号3k+1),为定值。

既然你已经知道他们的和为定值了,那你就设这个定值为m,那么m=x+y,设2三角形面积和为S,则2个三角形的面积和S=2√3x²-2√3mx+√3m²,是一个开口向上的函数,有最小值,-b/2a=m/2,则S最小时,x=m/2,该值的实际意义便是D为CE的中点时,此时2个三角形全等,一样的大小。
下面讲求最大值,根据S的解析式,可以知道,在对称轴的右侧,S随x的增大而增大,但不要以为x+y=m,x就可以一直扩大到m位置,要注意原题中“
F、H分别在边CA、CB上"上该条件,本题中的面积一定要满足该条件才行,所以x其实是有最大值的,因而导致S也有最大值,当DE取得最大值时,点F与C点重合,图形大致如图2,可知该时x必>m/2,所以必在抛物线对称轴右侧,且为x能取的最大值,所以当如图情况时,S有最大值。

最大值和最小值的结果,要用含AC,AB的代数式表示,并不是一个数字。
附上图
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式