已知x,x2是关于x的方程x²-kx+5(k-5)=0的两个正实数根,且2x1+x2=7,求实数k的值
展开全部
Δ=k²-20(k-5)≥0;
k-20k+100≥0;
(k-10)²≥0;
x1+x2=k;
x1x2=5(k-5);
2x1+x2=7;
x1=7-k;
x2=2k-7;
∴(2k-7)(7-k)=5(k-5);
14k-2k²-49+7k=5k-25;
2k²-16k+24=0;
k²-8k+12=0;
(k-2)(k-4)=0;
∴k=2或k=4
您好,很高兴为您解答,skyhunter002为您答疑解惑
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。
祝学习进步
k-20k+100≥0;
(k-10)²≥0;
x1+x2=k;
x1x2=5(k-5);
2x1+x2=7;
x1=7-k;
x2=2k-7;
∴(2k-7)(7-k)=5(k-5);
14k-2k²-49+7k=5k-25;
2k²-16k+24=0;
k²-8k+12=0;
(k-2)(k-4)=0;
∴k=2或k=4
您好,很高兴为您解答,skyhunter002为您答疑解惑
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。
祝学习进步
来自:求助得到的回答
展开全部
答:
x²-kx+5(k-5)=0
利用十字相乘法:
1 -5
X
1 -(k-5)
原方程化为:
(x-5)[x-(k-5)]=0
当x1=5,x2=k-5>0即k>5时,2x1+x2=10+k-5=7,k=2,不符合;
当x2=5,x1=k-5>0即k>5时,2x1+x2=2k-10+5=7,k=6,符合.
所以:k=6
x²-kx+5(k-5)=0
利用十字相乘法:
1 -5
X
1 -(k-5)
原方程化为:
(x-5)[x-(k-5)]=0
当x1=5,x2=k-5>0即k>5时,2x1+x2=10+k-5=7,k=2,不符合;
当x2=5,x1=k-5>0即k>5时,2x1+x2=2k-10+5=7,k=6,符合.
所以:k=6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x1+x2=k
x1x2=5k-25
x1=k-x2
则(k-x2)x2=5k-25
kx2-x2^2=5k-25
则x2=5
x1=k-5
则2(k-5)+5=7
k=6
x1x2=5k-25
x1=k-x2
则(k-x2)x2=5k-25
kx2-x2^2=5k-25
则x2=5
x1=k-5
则2(k-5)+5=7
k=6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
方程2个根 5,k-5,带入后式中,得到K=2或K=6,因为是正实根,所以K=6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询