
若函数f(x)=x3+ax-2在区间(1,+∞)内是增函数,则实数a的取值范围是( )
f′(x)=3x2+a,根据函数导数与函数的单调性之间的关系,f′(x)≥0在[1,+∞)上恒成立,即a≥-3x2,恒成立,只需a大于-3x2的最大值即可,而-3x2在[...
f′(x)=3x2+a,根据函数导数与函数的单调性之间的关系,f′(x)≥0在[1,+∞)上恒成立,即a≥-3x2,恒成立,只需a大于-3x2 的最大值即可,而-3x2 在[1,+∞)上的最大值为-3,所以a≥-3.即数a的取值范围是[-3,+∞)为什么可以取等于 题目给的是 开区间啊
展开
3个回答
展开全部
f'(x)=3x2+a在(1,+∞)上大于等于0
f'(x)在x正半轴单调增加,所以只要f'(1)>=0
解得a>=-3
f'(x)在x正半轴单调增加,所以只要f'(1)>=0
解得a>=-3
追问
第一步的≥0是怎么来的
追答
f(x)在该区域是增函数,那么它的导数恒不大于0
展开全部
解:f′(x)=3x2+a,根据函数导数与函数的单调性之间的关系,f′(x)≥0在[1,+∞)上恒成立,即a≥-3x2,恒成立,只需a大于-3x2 的最大值即可,而-3x2 在[1,+∞)上的最大值为-3,所以a≥-3.即数a的取值范围是[-3,+∞).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
-3x^2<3,而a>-3x^2,因而a>=-3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询