设函数f(x)在R上存在导数f'(x),对任意的x∈R,有f(-x)+f(x)=x²,
且在(0,+∞)上f'(x)>x.若f(2-a)-f(a)≥2-2a,则实数a的取值范围为()(A)[1,+∞)(B)(-∞,1](C)(-∞,2](D)[2,+∞)说说...
且在(0,+∞)上f'(x)>x.若f(2-a)-f(a)≥2-2a, 则实数a的取值范围为( )
(A) [1,+∞) (B) (-∞,1] (C) (-∞,2] (D) [2,+∞)
说说我自己的想法
f(2-a)-f(a)≥2-2a 可以变成 f(2-a) - (2-a) ≥ f(a) - a
设 g(x) = f(x) - x, 则g'(x) = f'(x) - 1 展开
(A) [1,+∞) (B) (-∞,1] (C) (-∞,2] (D) [2,+∞)
说说我自己的想法
f(2-a)-f(a)≥2-2a 可以变成 f(2-a) - (2-a) ≥ f(a) - a
设 g(x) = f(x) - x, 则g'(x) = f'(x) - 1 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询