点A,B分别是两条平行线m,n上任意两点,在直线……
点A,B分别是两条平行线m,n上任意两点,在直线n上找一点C,使BC=AB,连接AC,在AC上任取一点E,作角BEF=角ABC,EF交m于F,求证:当角ABC=90度时,...
点A,B分别是两条平行线m,n上任意两点,在直线n上找一点C,使BC=AB,连接AC,在AC上任取一点E,作角BEF=角ABC,EF交m于F,求证:当角ABC=90度时,线段EF于EB的关系
展开
2013-06-18
展开全部
解:(1)EF=EB.
证明:如图1,以E为圆心,以EA为半径画弧交直线m于点M,连接EM.
∴EM=EA,
∴∠EMA=∠EAM.
∵BC=kAB,k=1,
∴BC=AB.
∴∠CAB=∠ACB.
∵m∥n,
∴∠MAC=∠ACB,∠FAB=∠ABC.
∴∠MAC=∠CAB.
∴∠CAB=∠EMA.
∵∠BEF=∠ABC,
∴∠BEF=∠FAB.
∵∠AHF=∠EHB,
∴∠AFE=∠ABE.
在△AEB和△MEF中,
∵∠CAB=∠EMA∠ABE=∠AFEEA=EM
∴△AEB≌△MEF(AAS).
∴EF=EB.
探索思路:
如图1,∵BC=kAB,k=1,
∴BC=AB.
∴∠CAB=∠ACB.
∵m∥n,
∴∠MAC=∠ACB.
添加条件:∠ABC=90°.
证明:如图2,在直线m上截取AM=AB,连接ME.
∵BC=kAB,k=1,
∴BC=AB.
∵∠ABC=90°,
∴∠CAB=∠ACB=45°,
∵m∥n,
∴∠MAE=∠ACB=∠CAB=45°,∠FAB=90°.
∵AE=AE,
∴△MAE≌△ABE.
∴EM=EB,∠AME=∠ABE.
∵∠BEF=∠ABC=90°,
∴∠FAB+∠BEF=180°.
∴∠ABE+∠EFA=180°,
又∵∠AME+∠EMF=180°,
∴∠EMF=∠EFA.
∴EM=EF.
∴EF=EB.
(2)EF=1kEB.
证明:如图3,过点E作EM⊥m、EN⊥AB,垂足为M、N.
∴∠EMF=∠ENA=∠ENB=90°.
∵m∥n,∠ABC=90°,
∴∠MAB=90°.
∴四边形MENA为矩形.
∴ME=NA,∠MEN=90°.
∵∠BEF=∠ABC=90°.
∴∠MEF=∠NEB.
∴△MEF∽△NEB.
∴MEEN=EFEB,
∴ANEN=EFEB.
在Rt△ANE和Rt△ABC中,tan∠BAC=ENAN=BCAB=k,
∴EBEF=k,
∴EF=1kEB.
证明:如图1,以E为圆心,以EA为半径画弧交直线m于点M,连接EM.
∴EM=EA,
∴∠EMA=∠EAM.
∵BC=kAB,k=1,
∴BC=AB.
∴∠CAB=∠ACB.
∵m∥n,
∴∠MAC=∠ACB,∠FAB=∠ABC.
∴∠MAC=∠CAB.
∴∠CAB=∠EMA.
∵∠BEF=∠ABC,
∴∠BEF=∠FAB.
∵∠AHF=∠EHB,
∴∠AFE=∠ABE.
在△AEB和△MEF中,
∵∠CAB=∠EMA∠ABE=∠AFEEA=EM
∴△AEB≌△MEF(AAS).
∴EF=EB.
探索思路:
如图1,∵BC=kAB,k=1,
∴BC=AB.
∴∠CAB=∠ACB.
∵m∥n,
∴∠MAC=∠ACB.
添加条件:∠ABC=90°.
证明:如图2,在直线m上截取AM=AB,连接ME.
∵BC=kAB,k=1,
∴BC=AB.
∵∠ABC=90°,
∴∠CAB=∠ACB=45°,
∵m∥n,
∴∠MAE=∠ACB=∠CAB=45°,∠FAB=90°.
∵AE=AE,
∴△MAE≌△ABE.
∴EM=EB,∠AME=∠ABE.
∵∠BEF=∠ABC=90°,
∴∠FAB+∠BEF=180°.
∴∠ABE+∠EFA=180°,
又∵∠AME+∠EMF=180°,
∴∠EMF=∠EFA.
∴EM=EF.
∴EF=EB.
(2)EF=1kEB.
证明:如图3,过点E作EM⊥m、EN⊥AB,垂足为M、N.
∴∠EMF=∠ENA=∠ENB=90°.
∵m∥n,∠ABC=90°,
∴∠MAB=90°.
∴四边形MENA为矩形.
∴ME=NA,∠MEN=90°.
∵∠BEF=∠ABC=90°.
∴∠MEF=∠NEB.
∴△MEF∽△NEB.
∴MEEN=EFEB,
∴ANEN=EFEB.
在Rt△ANE和Rt△ABC中,tan∠BAC=ENAN=BCAB=k,
∴EBEF=k,
∴EF=1kEB.
火丰科技
2024-11-28 广告
2024-11-28 广告
致力于从事惯性测量、卫星导航等产品的研发、生产的高新技术企业。公司旗下投资多条自动化生产线分别分布于西安、深圳、珠海等地,其中包括光纤陀螺、MEMS惯导、石英加速度计、电子对抗通信产品生产线,拥有中国先进的惯性导航产品及电子对抗产品生产条件...
点击进入详情页
本回答由火丰科技提供
2013-06-18
展开全部
垂直啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询