点A、B分别是两条平行线m、n上任意两点,在直线n上找一点C,使BC=kAB,连接AC,在直线AC上任取一点E,作

点A、B分别是两条平行线m、n上任意两点,在直线n上找一点C,使BC=kAB,连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.(1)如图1,当... 点A、B分别是两条平行线m、n上任意两点,在直线n上找一点C,使BC=kAB,连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.(1)如图1,当k=1时,探究线段EF与EB的关系,并加以说明;说明:①如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);②在完成①之后,可以自己添加条件(添加的条件限定为∠ABC为特殊角),在图2中补全图形,完成证明(选择添加条件比原题少得3分).(2)如图3,若∠ABC=90°,k≠1,探究线段EF与EB的关系,并说明理由. 展开
 我来答
永妆感2128
2014-08-24 · 超过63用户采纳过TA的回答
知道答主
回答量:124
采纳率:0%
帮助的人:130万
展开全部
解:(1)EF=EB.
证明:如图1,以E为圆心,以EA为半径画弧交直线m于点M,连接EM.
∴EM=EA,
∴∠EMA=∠EAM. 
∵BC=kAB,k=1,
∴BC=AB. 
∴∠CAB=∠ACB. 
∵m∥n,
∴∠MAC=∠ACB,∠FAB=∠ABC.
∴∠MAC=∠CAB. 
∴∠CAB=∠EMA. 
∵∠BEF=∠ABC,
∴∠BEF=∠FAB. 
∵∠AHF=∠EHB,
∴∠AFE=∠ABE. 
在△AEB和△MEF中,
∠CAB=∠EMA
∠ABE=∠AFE
EA=EM

∴△AEB≌△MEF(AAS). 
∴EF=EB. 
探索思路:
如图1,∵BC=kAB,k=1,
∴BC=AB. 
∴∠CAB=∠ACB.
∵m∥n,
∴∠MAC=∠ACB. 

添加条件:∠ABC=90°.
证明:如图2,在直线m上截取AM=AB,连接ME.
∵BC=kAB,k=1,
∴BC=AB.
∵∠ABC=90°,
∴∠CAB=∠ACB=45°,
∵m∥n,
∴∠MAE=∠ACB=∠CAB=45°,∠FAB=90°.
∵AE=AE,
∴△MAE≌△ABE. 
∴EM=EB,∠AME=∠ABE. 
∵∠BEF=∠ABC=90°,
∴∠FAB+∠BEF=180°.
∴∠ABE+∠EFA=180°,
又∵∠AME+∠EMF=180°,
∴∠EMF=∠EFA. 
∴EM=EF.
∴EF=EB. 

(2)EF=
1
k
EB.
证明:如图3,过点E作EM⊥m、EN⊥AB,垂足为M、N.
∴∠EMF=∠ENA=∠ENB=90°.
∵m∥n,∠ABC=90°,
∴∠MAB=90°. 
∴四边形MENA为矩形.
∴ME=NA,∠MEN=90°.
∵∠BEF=∠ABC=90°.
∴∠MEF=∠NEB. 
∴△MEF∽△NEB. 
ME
EN
=
EF
EB

AN
EN
EF
EB

在Rt△ANE和Rt△ABC中,tan∠BAC=
EN
AN
BC
AB
=k

EB
EF
=k,
∴EF=
1
k
EB.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式