点A,B分别是两条平行线m,n上任意两点,在直线……

点A,B分别是两条平行线m,n上任意两点,在直线n上找一点C,使BC=AB,连接AC,在AC上任取一点E,作角BEF=角ABC,EF交m于F,求证:当角ABC=90度时,... 点A,B分别是两条平行线m,n上任意两点,在直线n上找一点C,使BC=AB,连接AC,在AC上任取一点E,作角BEF=角ABC,EF交m于F,求证:当角ABC=90度时,线段EF于EB的关系 展开
 我来答
匿名用户
2013-06-18
展开全部
解:(1)EF=EB.
证明:如图1,以E为圆心,以EA为半径画弧交直线m于点M,连接EM.
∴EM=EA,
∴∠EMA=∠EAM.
∵BC=kAB,k=1,
∴BC=AB.
∴∠CAB=∠ACB.
∵m∥n,
∴∠MAC=∠ACB,∠FAB=∠ABC.
∴∠MAC=∠CAB.
∴∠CAB=∠EMA.
∵∠BEF=∠ABC,
∴∠BEF=∠FAB.
∵∠AHF=∠EHB,
∴∠AFE=∠ABE.
在△AEB和△MEF中,
∵∠CAB=∠EMA∠ABE=∠AFEEA=EM
∴△AEB≌△MEF(AAS).
∴EF=EB.
探索思路:
如图1,∵BC=kAB,k=1,
∴BC=AB.
∴∠CAB=∠ACB.
∵m∥n,
∴∠MAC=∠ACB.

添加条件:∠ABC=90°.
证明:如图2,在直线m上截取AM=AB,连接ME.
∵BC=kAB,k=1,
∴BC=AB.
∵∠ABC=90°,
∴∠CAB=∠ACB=45°,
∵m∥n,
∴∠MAE=∠ACB=∠CAB=45°,∠FAB=90°.
∵AE=AE,
∴△MAE≌△ABE.
∴EM=EB,∠AME=∠ABE.
∵∠BEF=∠ABC=90°,
∴∠FAB+∠BEF=180°.
∴∠ABE+∠EFA=180°,
又∵∠AME+∠EMF=180°,
∴∠EMF=∠EFA.
∴EM=EF.
∴EF=EB.

(2)EF=1kEB.
证明:如图3,过点E作EM⊥m、EN⊥AB,垂足为M、N.
∴∠EMF=∠ENA=∠ENB=90°.
∵m∥n,∠ABC=90°,
∴∠MAB=90°.
∴四边形MENA为矩形.
∴ME=NA,∠MEN=90°.
∵∠BEF=∠ABC=90°.
∴∠MEF=∠NEB.
∴△MEF∽△NEB.
∴MEEN=EFEB,
∴ANEN=EFEB.
在Rt△ANE和Rt△ABC中,tan∠BAC=ENAN=BCAB=k,
∴EBEF=k,
∴EF=1kEB.
创远信科
2024-07-24 广告
矢量网络分析 (VNA) 是最重要的射频和微波测量方法之一。 创远信科提供广泛的多功能、高性能网络分析仪(最高40GHz)和标准多端口解决方案。创远信科的矢量网络分析仪非常适用于分析无源及有源器件,比如滤波器、放大器、混频器及多端口模块。 ... 点击进入详情页
本回答由创远信科提供
匿名用户
2013-06-18
展开全部
垂直啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式