1*2+2*3+•••n(n+1)=?
5个回答
2014-10-18
展开全部
解法一:(裂项相消)
因
n(n+1) = 1/3[n(n+1)(n+2) -(n-1)n(n+1)]
所以
1*2+2*3+3*4......+N*(N+1) = 1/3(1*2*3 - 0) + 1/3(2*3*4 - 1*2*3)+1/3(3*4*5 - 2*3*4) +....+ 1/3[n(n+1)(n+2) -(n-1)n(n+1)]
= 1/3[(1*2*3 - 0)+(2*3*4 - 1*2*3)+(3*4*5 - 2*3*4)+....+[n(n+1)(n+2) -(n-1)n(n+1)]]
= 1/3n(n+1)(n+2)
解法二:(分别求和)
因 n(n+1) = n^2 + n
则
1*2+2*3+3*4......+N*(N+1)
= (1^2 + 2^2 +3^3+....+n^2) +(1+2+3+...+n)
= 1/6n(n+1)(2n+1) + 1/2n(n+1)
= 1/3n(n+1)(n+2)
因
n(n+1) = 1/3[n(n+1)(n+2) -(n-1)n(n+1)]
所以
1*2+2*3+3*4......+N*(N+1) = 1/3(1*2*3 - 0) + 1/3(2*3*4 - 1*2*3)+1/3(3*4*5 - 2*3*4) +....+ 1/3[n(n+1)(n+2) -(n-1)n(n+1)]
= 1/3[(1*2*3 - 0)+(2*3*4 - 1*2*3)+(3*4*5 - 2*3*4)+....+[n(n+1)(n+2) -(n-1)n(n+1)]]
= 1/3n(n+1)(n+2)
解法二:(分别求和)
因 n(n+1) = n^2 + n
则
1*2+2*3+3*4......+N*(N+1)
= (1^2 + 2^2 +3^3+....+n^2) +(1+2+3+...+n)
= 1/6n(n+1)(2n+1) + 1/2n(n+1)
= 1/3n(n+1)(n+2)
追问
有点复杂难懂,回答是对的。谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询