已知函数f(x)=Asin(3x+φ)(A>0,0<φ<π)在x=π/12时取得最大值为4 (1)
已知函数f(x)=Asin(3x+φ)(A>0,0<φ<π)在x=π/12时取得最大值为4(1)求fx最小正周期(2)求fx解析式(3)若x∈[-π/4,0]求fx的值域...
已知函数f(x)=Asin(3x+φ)(A>0,0<φ<π)在x=π/12时取得最大值为4 (1)求fx最小正周期 (2)求fx解析式 (3)若x∈[-π/4,0]求fx的值域
展开
2个回答
展开全部
已知函数f(x)=Asin(3x+φ)(A>0,0<φ<π)在x=π/12时取得最大值为4 (1)求fx最小正周期 (2)求fx解析式 (3)若x∈[-π/4,0]求fx的值域
(1)解析:∵函数f(x)=Asin(3x+φ)(A>0,0<φ<π)在x=π/12时取得最大值为4
∴A=4,T=2π/w=2π/3
(2)∴f(x)=4sin(3x+φ)==> f(π/12)=4sin(π/4+φ)=4==>π/4+φ=π/2==>φ=π/4
∴f(x)=4sin(3x+π/4)
(3)单调递增区:2kπ-π/2<=3x+π/4<=2kπ+π/2==>2kπ/3-π/4<=x<=2kπ/3+π/12
∵x∈[-π/4,0]
f(0)=4sin(0+π/4)= 2√2
∴fx的值域[-4,2√2]
(1)解析:∵函数f(x)=Asin(3x+φ)(A>0,0<φ<π)在x=π/12时取得最大值为4
∴A=4,T=2π/w=2π/3
(2)∴f(x)=4sin(3x+φ)==> f(π/12)=4sin(π/4+φ)=4==>π/4+φ=π/2==>φ=π/4
∴f(x)=4sin(3x+π/4)
(3)单调递增区:2kπ-π/2<=3x+π/4<=2kπ+π/2==>2kπ/3-π/4<=x<=2kπ/3+π/12
∵x∈[-π/4,0]
f(0)=4sin(0+π/4)= 2√2
∴fx的值域[-4,2√2]
追问
太谢谢你了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询