数列{an}的前n项和为Sn,已知a1=1/2,Sn=n^2-n(n-1)(n=1,2,3......)写出Sn与Sn+1的递推关系式(n大于等于2

并求Sn关于n的表达式设fn=(Sn/n)X^n+1,bn=f'n(p)(p属于R),求数列{bn}的前n项和Tn... 并求Sn关于n的表达式
设fn=(Sn/n)X^n+1,bn=f'n(p)(p属于R),求数列{bn}的前n项和Tn
展开
固起人d
2013-06-20 · TA获得超过7539个赞
知道小有建树答主
回答量:595
采纳率:0%
帮助的人:929万
展开全部
1.Sn=n*an-n(n-1)
Sn-1=(n-1)an-1-(n-2)(n-1) n>1
前式减后式
an=n*an-(n-1)an-1-2(n-1)
(n-1)*an-(n-1)an-1-2(n-1)=0
(n-1)(an-an-1-2)=0 n>1
an-an-1=2 n>1
数列(an)是公差为2的等差数列
an=1/2+2(n-1)=2n-3/2
S1=a1=1/2
S2=1/2+1/2+2=3
S3=1/2+1/2+2+1/2+4=15/2
Sn=(1/2+2n-3/2)n/2
=(2n-1)n/2

2.Fn(x)=(Sn/n)x^(n+1)=nx^(n+1)/(n+1)
F'n(p)=n(n+1)p^n/(n+1)=np^n=Bn
若p=1,则Bn=n,则Tn=n(n+1)/2;
若p≠1,这是个很熟悉的关系式,利用错位相减:
Tn=p+2p²+……+np^n
pTn=p²+2p^3+……+np^(n+1)
两式相减=(p-1)Tn=np^(n+1)-(p+p²+……+p^n)=np^(n+1)-p(1-p^n)/(1-p)
Tn=[np^(n+1)-p(1-p^n)/(1-p)]/(p-1)

望采纳 谢谢
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式