求极限lim(1-cosx)/x^2 急急急!!
2个回答
展开全部
应该是x->0吧:
用罗比达法则:lim x->0 (1-cosx)/x^2=lim x->0 sinx/(2x)=1/2
或者:
倍角公式:cosx=1-2[sin(x/2)]^2
故1-cosx=2[sin(x/2)]^2
于是
lim x->0 (1-cosx)/x^2=lim x->0 2[sin(x/2)]^2/x^2
=lim x->0 2[(sin(x/2)/(x/2)]^2*1/4
=lim x->0 1/2*[(sin(x/2)/(x/2)]^2
=1/2
用罗比达法则:lim x->0 (1-cosx)/x^2=lim x->0 sinx/(2x)=1/2
或者:
倍角公式:cosx=1-2[sin(x/2)]^2
故1-cosx=2[sin(x/2)]^2
于是
lim x->0 (1-cosx)/x^2=lim x->0 2[sin(x/2)]^2/x^2
=lim x->0 2[(sin(x/2)/(x/2)]^2*1/4
=lim x->0 1/2*[(sin(x/2)/(x/2)]^2
=1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询