2个回答
展开全部
I = ∫<0, 1>p^5 √(1+4p^2)dp = (1/2)∫<0, 1>p^4 √(1+4p^2)d(p^2)
令 √(1+4p^2) = u, 则 p^2 = (u^2-1)/4, d(p^2) = (u/2)du
I = (1/2)∫<1, √5>(1/16)u(u^2-1)^2(u/2)du
= (1/64)∫<1, √5>u^2(u^2-1)^2du
= (1/64)∫<1, √5>(u^6-2u^4+u^2)du
= (1/64)[u^7/7 - u^5/5 + u^3/3]<1, √5>
= (1/64)(305√5/21-29/105) = (1525√5-29)/6720
令 √(1+4p^2) = u, 则 p^2 = (u^2-1)/4, d(p^2) = (u/2)du
I = (1/2)∫<1, √5>(1/16)u(u^2-1)^2(u/2)du
= (1/64)∫<1, √5>u^2(u^2-1)^2du
= (1/64)∫<1, √5>(u^6-2u^4+u^2)du
= (1/64)[u^7/7 - u^5/5 + u^3/3]<1, √5>
= (1/64)(305√5/21-29/105) = (1525√5-29)/6720
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询