多边形的内角和等于什么
n边形的内角和等于(n-2)×180°(n大于等于3且n为整数)。由三条或三条以上的线段首尾顺次连接所组成的平面图形叫做多边形。按照不同的标准,多边形可以分为正多边形和非正多边形、凸多边形及凹多边形等。
多边形定理
内角
1、n边形的内角和等于(n-2)x180;
注:此定理适用所有的平面多边形,包括凸多边形和平面凹多边形。
2、在平面多边形中,边数相等的凸多边形和凹多边形内角和相等。但是空间多边形不适用。可逆用:
n边形的边=(内角和÷180°)+2;
过n边形一个顶点有(n-3)条对角线;
n边形共有n×(n-3)÷2=对角线;
3、n边形过一个顶点引出所有对角线后,把多边形分成n-2个三角形
推论:
(1)任意凸形多边形的外角和都等于360°;
(2)多边形对角线的计算公式:n边形的对角线条数等于1/2·n(n-3);
(3)在平面内,各边相等,各内角也都相等的多边形叫做正多边形。【两个条件必须同时满足】
反例:矩形(各内角相等,各边不一定相等);菱形(各边相等,各内角不一定相等)。
外角
多边形外角和定理:
1、n边形外角和等于n·180°-(n-2)·180°=360°
2、多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
3、多边形的内角的一边与另一边的反向延长线所组成的角,叫这个多边形的外角,(这样的产生外角有两个,由于他们相等,但我们通常只取其中一个)。