幂函数的定义域是什么?
展开全部
幂函数的定义域是:当a为负数时,定义域为(-∞,0)和(0,+∞)。
当a为零时,定义域为(-∞,0)和(0,+∞);当a为正数时,定义域为(-∞,+∞)。
幂函数的定义域:
形如y=x^a(a为常数)的函数,称为幂函数。
如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。
正值性质:
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0)。
b、函数的图像在区间[0,+∞)上是增函数。
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增)。
负值性质:
当α<0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1)。
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询