已知向量a=(cosx,-2分之一),b=(根号3sinx,cos2x),x属于r,设函数f(x)=向量a乘向量b
展开全部
解
f(x)=a*b
=√3cosxsinx-1/2cos2x
=√3/2sin2x-1/2cos2x
=sin(2x-π/6)
最小正周期为;
T=2π/2=π
∵x∈[0,π/2]
∴2x-π/6∈[-π/6,5π/6]
∴
当2x-π/6=-π/6时
f(x)取得最小值,f(x)=-1
当2x-π/6=π/2时
f(x)取得最大值,f(x)=1
f(x)=a*b
=√3cosxsinx-1/2cos2x
=√3/2sin2x-1/2cos2x
=sin(2x-π/6)
最小正周期为;
T=2π/2=π
∵x∈[0,π/2]
∴2x-π/6∈[-π/6,5π/6]
∴
当2x-π/6=-π/6时
f(x)取得最小值,f(x)=-1
当2x-π/6=π/2时
f(x)取得最大值,f(x)=1
更多追问追答
追问
可以吧第一问的过程写详细一点吗?
追答
是f(x)转化过程不清楚吗
f(x)=a*b
=√3cosxsinx-1/2cos2x
=√3/2(2sinxcosx)-1/2cos2x
=√3/2sin2x-1/2cos2x
=sin2xcosπ/6-sinπ/6cos2x
=sin(2x-π/6)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |