如图,在三角形ABC中,AB=AC,D是三角形ABC外的一点,且角ABD等于角ACD等于60度,求证BD+CD=AB

我已经截取延长BD至E,是DE=CD,就想知道怎样求证角ADC等于角ADE... 我已经截取延长BD至E,是DE=CD,就想知道怎样求证角ADC等于角ADE 展开
 我来答
希望教育资料库
推荐于2017-12-15 · 在这里,遇见最优秀的自己!
希望教育资料库
采纳数:4421 获赞数:58524

向TA提问 私信TA
展开全部
证明:延长BD到E,使DE=DC,连接AE、CE
∵∠ABD=∠ACD=60°
∴ABCD四点共圆
∴∠BDC=∠BAC=(1/2)弧BC
∴∠CAD=∠CBD=(1/2)弧CD
∴∠ADB=∠ACB=(1/2)弧AB
在△ADC和△ADE中
∠ADC= ∠ACB+∠BAC
∠ADE=∠ABE+∠BAD
=∠ABE+∠BAC+∠CAD=∠ABE+∠CBD+∠BAC
=∠ABC+∠BAC
∵AB=AC
∴∠ABC=∠ACB
∴∠ADC=∠ADE
∵CD=DE(已做)
AD=AD(公共边)
∴△ADC≌△ADE
∴AE=AC
∴AE=AB
∴△ABE是等边三角形
∴BE=AB
∵BE=BD+DE=BD+DC
∴AB=BD+DC
更多追问追答
追问
不能用四点共圆
追答
证明2:延长BD,并在BD的延长线上取一点M,使DM=CD,
角ADM=90度+1/2角BDC,
角ADC=角ADB+角BDC=90度-1/2角BDC+角BDC=90度+1/2角BDC,
所以角ADM=角ADC.
此时在三角形ACD和三角形ADM中,AD=AD,CD=DM,角ADC=角ADM,
所以三角形ADC全等于三角形ADM(SAS).
所以AC=AM,又因为AB=AC,所以AM=AB.
又因为角ABD=60度,所以三角形ABM为等边三角形.
所以AB=BM,又因为CD=DM,
∴AB=BD+DC
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式