当x趋向于0时,ln(1+x)~x等价无穷小的证明
想问一下 lim x趋近于0 ln(1+x)^(1/x)是怎么变到ln[lim x趋近于0 (1+x^1/x)]的呢,没有这个定理吧 展开
lim(x→0) ln(1+x)/x
=lim(x→0) ln(1+x)^(1/x)
=ln[lim(x→0) (1+x)^(1/x)]
由两个重要极限知:lim(x→0) (1+x)^(1/x)=e;
所以原式=lne=1,所以ln(1+x)和x是等价无穷小
无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。因此常量也是可以当做变量来研究的。这么说来——0是可以作为无穷小的常数。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。
等价无穷小的定义
(C为常数),就说b是a的n阶的无穷小, b和a^n是同阶无穷小。特殊地,C=1且n=1,即
2021-11-22 广告
lim(x→0) ln(1+x)/x=lim(x→0) ln(1+x)^(1/x)=ln[lim(x→0) (1+x)^(1/x)]
由两个重要极限知:lim(x→0) (1+x)^(1/x)=e
所以原式=lne=1
所以ln(1+x)和x是等价无穷小
或
lim(x→0)
ln(1+x)/x=lim(x→0)
ln(1+x)^(1/x)=ln[lim(x→0)
(1+x)^(1/x)]
由两个重要极限知:lim(x→0)
(1+x)^(1/x)=e,所以原式=lne=1,
所以ln(1+x)和x是等价无穷小
条件:
被代换的量,在取极限的时候极限值为0。
被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。
lim(x→0) ln(1+x)/x=lim(x→0) ln(1+x)^(1/x)=ln[lim(x→0) (1+x)^(1/x)]
由两个重要极限知:lim(x→0) (1+x)^(1/x)=e,所以原式=lne=1,
所以ln(1+x)和x是等价无穷小
等价无穷小是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。等价无穷小也是同阶无穷小。另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。
扩展资料
极限方法是数学分析用以研究函数的基本方法,分析的各种基本概念(连续、微分、积分和级数)都是建立在极限概念的基础之上,然后才有分析的全部理论、计算和应用.所以极限概念的精确定义是十分必要的,它是涉及分析的理论和计算是否可靠的根本问题。
历史上是柯西(Cauchy,A.-L.)首先较为明确地给出了极限的一般定义。他说,“当为同一个变量所有的一系列值无限趋近于某个定值,并且最终与它的差要多小就有多小”(《分析教程》,1821),这个定值就称为这个变量的极限.其后,外尔斯特拉斯(Weierstrass,K.(T.W.))按照这个思想给出严格定量的极限定义,这就是现在数学分析中使用的ε-δ定义或ε-Ν定义等。