一块草地,每天草生长的速度相同,这块草地可以供16头牛吃20天,或80头羊吃12天,如果1头牛的吃草量等于4

只羊的吃草量,那么10头牛和60只羊一起可以吃多少天?拜托分析一下,最好详细些,谢谢。... 只羊的吃草量,那么10头牛和60只羊一起可以吃多少天?
拜托分析一下,最好详细些,谢谢。
展开
wangku2013
高粉答主

2013-06-26 · 关注我不会让你失望
知道大有可为答主
回答量:9665
采纳率:86%
帮助的人:2835万
展开全部
一块草地,每天草生长的速度相同,这块草地可以供16头牛吃20天,或80头羊吃12天,如果1头牛的吃草量等于4只羊的吃草量,那么10头牛和60只羊一起可以吃多少天?
解,得:
分析:
根据“一头牛一天的吃草量等于4只羊一天的吃草量,”那么80只羊的吃草量就等于(80÷4)20头牛的吃草量;60只羊的吃草量就等于(60÷4)15头牛的吃草量;
设每头牛每天吃早1份,根据“16头牛吃20天,或供80只羊(20头牛)吃12天”可以求出草每天生长的份数:(16×20-20×12)÷(20-12)=10(份);再根据“16头牛吃20天,”可以求出草地原有的草的份数:(16-10)×20=120(份);由于草每天生长10份,可供10头牛和60只羊(10+15=25头牛)中的10头牛吃,剩下的15头吃草地原有的120份草,可以吃120÷15=8(天);问题得解.
解:设每头牛每天吃早1份,把羊的只数转化为牛的头数为:
80÷4=20(头),60÷4=15(头);
草每天生长的份数:
(16×20-20×12)÷(20-12),
=(320-240)÷8,
=80÷8,
=10(份);
草地原有的草的份数:
(16-10)×20=120(份);
10头牛和60只羊就相当于有牛:10+15=25(头);所吃天数为:
120÷(25-10),
=120÷15,
=8(天);
答:10头牛和60只羊一起能吃8天.
追问
可以求出草地原有的草的份数:(16-10)×20=120(份)

为什么减去10呢?
追答
@,@这个是标准答案的~没有研究很深的@~你可以仔细琢磨一下看看~
本题是典型的牛吃草问题,这种问题关键是求出草每天生长的份数和草地原有的草的份数;可以利用两种假设条件“16头牛吃20天,或供80只羊吃12天”求出;本题需要注意把羊的只数转化为牛的头数便于解答.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式