如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,猜一猜EF与GH的位置关
如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,猜一猜EF与GH的位置关系,并证明你的结论...
如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,猜一猜EF与GH的位置关系,并证明你的结论
展开
4个回答
展开全部
连接EG,GF,FH,EH,
∵E、F分别是AD、BC的中点,G、H分别是BD、AC的中点
∴EG=1/2AB
EH=1/2CD
∵AB=DC
∴EG=EH
∵EG∥ABHF∥AB
∴EG∥HF
同理GF∥EH
∴四边形EGFH是菱形,EF、GH分别为对角线,
∴EF⊥GH
∵E、F分别是AD、BC的中点,G、H分别是BD、AC的中点
∴EG=1/2AB
EH=1/2CD
∵AB=DC
∴EG=EH
∵EG∥ABHF∥AB
∴EG∥HF
同理GF∥EH
∴四边形EGFH是菱形,EF、GH分别为对角线,
∴EF⊥GH
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
EF和GH 相互平分,理由,
因为E、H分别是AD、AC的中点,
所以EH是△ACD的中位线
所以EH=CD/2,EH∥CD
同理,GH是△BCD的中位线
所以GF=CD/2,GH∥CD
所以GF=EH,GH∥EH
所以四边形EGFH是平行四边形
所以EF和GH 相互平分
因为E、H分别是AD、AC的中点,
所以EH是△ACD的中位线
所以EH=CD/2,EH∥CD
同理,GH是△BCD的中位线
所以GF=CD/2,GH∥CD
所以GF=EH,GH∥EH
所以四边形EGFH是平行四边形
所以EF和GH 相互平分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你采纳的答案不全面,忘了这个abcd可以是正方形的时候,g h会重合,这个要是问答提,你得考虑到这种情况
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询