数论 设m>n≥0,证明(2^(2^n)+1)|(2^(2^m)-1)
1个回答
展开全部
其实就是因式分解.
2^(2^m)-1 = (2^(2^(m-1))-1)(2^(2^(m-1))+1)
= (2^(2^(m-2))-1)(2^(2^(m-2))+1)(2^(2^(m-1))+1)
...
= (2^1-1)(2^1+1)(2^2+1)(2^4+1)...(2^(2^(m-2))+1)(2^(2^(m-1))+1)
= ∏{0 ≤ i ≤ m-1} (2^(2^i)+1)
而由m > n, 有n ≤ m-1, 故2^(2^n)+1是乘积中的一项.
可知2^(2^n)+1 | 2^(2^m)-1.
2^(2^m)-1 = (2^(2^(m-1))-1)(2^(2^(m-1))+1)
= (2^(2^(m-2))-1)(2^(2^(m-2))+1)(2^(2^(m-1))+1)
...
= (2^1-1)(2^1+1)(2^2+1)(2^4+1)...(2^(2^(m-2))+1)(2^(2^(m-1))+1)
= ∏{0 ≤ i ≤ m-1} (2^(2^i)+1)
而由m > n, 有n ≤ m-1, 故2^(2^n)+1是乘积中的一项.
可知2^(2^n)+1 | 2^(2^m)-1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询