在三角形ABC中.内角A,B,C的对边为a,b,c,若a=2,C=派/4,cos(B/2)=二倍根号五/5,求三角形ABC的面积S. 20
2个回答
展开全部
设BC边上的高=h. 垂足=D
S = 1/2 * a * h = h
cos(B/2) = 2√5/5
cosB = 2cos²(B/2) -1 = 2 * 4/5 -1 = 3/5
cosB >0, B为锐角
sinB = √(1-co²sB) =4/5
C=45度。
AD = CD = h
BD = 2-CD = 2-h
AD/BD = h/(2-h) = sinB/cosB = 4/3
3h = 8-4h
7h=8
h= 8/7
所以 S= h= 8/7
S = 1/2 * a * h = h
cos(B/2) = 2√5/5
cosB = 2cos²(B/2) -1 = 2 * 4/5 -1 = 3/5
cosB >0, B为锐角
sinB = √(1-co²sB) =4/5
C=45度。
AD = CD = h
BD = 2-CD = 2-h
AD/BD = h/(2-h) = sinB/cosB = 4/3
3h = 8-4h
7h=8
h= 8/7
所以 S= h= 8/7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询