设向量组α1,α2,α3线性无关,证明:向量组β1=α1+α2,β2=α1-α2,β3=α3线性无关 10
1个回答
展开全部
设 k1β1+k2β2+k3β3=0
即 k1(α1+α2)+k2(α1-α2)+k3α3=(k1+k2)α1+(k1-k2)α2+k3α3=0
又因为 向量组α1,α2,α3线性无关
所以 k1+k2=0,k1-k2=0,k3=0
故 k1=k2=k3=0
由线性无关定义 有向量组β1, β2, β3线性无关
即 k1(α1+α2)+k2(α1-α2)+k3α3=(k1+k2)α1+(k1-k2)α2+k3α3=0
又因为 向量组α1,α2,α3线性无关
所以 k1+k2=0,k1-k2=0,k3=0
故 k1=k2=k3=0
由线性无关定义 有向量组β1, β2, β3线性无关
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询