如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,
如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,PR⊥BD于点R.(1)如图1,当点P为线段E...
如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,PR⊥BD于点R.(1)如图1,当点P为线段EC中点时,易证:PR+PQ=
12
5
(不需证明).(2)如图2,当点P为线段EC上的任意一点(不与点E、点C重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,当点P为线段EC延长线上的任意一点时,其它条件不变,则PR与PQ之间又具有怎样的数量关系?请直接写出你的猜想.
(2)要两种证明方法 展开
12
5
(不需证明).(2)如图2,当点P为线段EC上的任意一点(不与点E、点C重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,当点P为线段EC延长线上的任意一点时,其它条件不变,则PR与PQ之间又具有怎样的数量关系?请直接写出你的猜想.
(2)要两种证明方法 展开
3个回答
展开全部
⑵方法一(面积法):连接BP,过E作EF⊥BC于F,
ΔBEF∽ΔBDC,EF/CD=BE/BD,EF/3=4/5,EF=12/5,
∵SΔBCE=1/2BC*EF=24/5,
而SΔBCE=1/2BE*PR+1/2BC*PQ=2(PR+PQ),
∴PR+PQ=12/5。
方法二(截长法):
过P作PG⊥EF于G,则四边形CQGP是矩形,∴PQ=FG,
∵PG∥BC,∴∠EPG=∠ECB,
∵BE=BC,∴∠REP=∠ECB,∴∠EPG=∠REP,
∵∠PRE=∠PGE=90°,PE=PE,∴ΔPER≌ΔEPG,∴PR=EG,
∴PR+PQ=EF=12/5。
⑶PR-PQ=12/5。
ΔBEF∽ΔBDC,EF/CD=BE/BD,EF/3=4/5,EF=12/5,
∵SΔBCE=1/2BC*EF=24/5,
而SΔBCE=1/2BE*PR+1/2BC*PQ=2(PR+PQ),
∴PR+PQ=12/5。
方法二(截长法):
过P作PG⊥EF于G,则四边形CQGP是矩形,∴PQ=FG,
∵PG∥BC,∴∠EPG=∠ECB,
∵BE=BC,∴∠REP=∠ECB,∴∠EPG=∠REP,
∵∠PRE=∠PGE=90°,PE=PE,∴ΔPER≌ΔEPG,∴PR=EG,
∴PR+PQ=EF=12/5。
⑶PR-PQ=12/5。
2013-07-12
展开全部
⑵方法一(面积法):连接BP,过E作EF⊥BC于F,
ΔBEF∽ΔBDC,EF/CD=BE/BD,EF/3=4/5,EF=12/5,
∵SΔBCE=1/2BC*EF=24/5,
而SΔBCE=1/2BE*PR+1/2BC*PQ=2(PR+PQ),
∴PR+PQ=12/5。
方法二(截长法):
过P作PG⊥EF于G,则四边形CQGP是矩形,∴PQ=FG,
∵PG∥BC,∴∠EPG=∠ECB,
∵BE=BC,∴∠REP=∠ECB,∴∠EPG=∠REP,
∵∠PRE=∠PGE=90°,PE=PE,∴ΔPER≌ΔEPG,∴PR=EG,
∴PR+PQ=EF=12/5。
⑶PR-PQ=12/5。
ΔBEF∽ΔBDC,EF/CD=BE/BD,EF/3=4/5,EF=12/5,
∵SΔBCE=1/2BC*EF=24/5,
而SΔBCE=1/2BE*PR+1/2BC*PQ=2(PR+PQ),
∴PR+PQ=12/5。
方法二(截长法):
过P作PG⊥EF于G,则四边形CQGP是矩形,∴PQ=FG,
∵PG∥BC,∴∠EPG=∠ECB,
∵BE=BC,∴∠REP=∠ECB,∴∠EPG=∠REP,
∵∠PRE=∠PGE=90°,PE=PE,∴ΔPER≌ΔEPG,∴PR=EG,
∴PR+PQ=EF=12/5。
⑶PR-PQ=12/5。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
AB都等於3,PR PQ怎麼等於12,图画错了,还是怎么了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询