如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,

如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,PR⊥BD于点R.(1)如图1,当点P为线段E... 如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,PR⊥BD于点R.(1)如图1,当点P为线段EC中点时,易证:PR+PQ=
12
5
(不需证明).(2)如图2,当点P为线段EC上的任意一点(不与点E、点C重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,当点P为线段EC延长线上的任意一点时,其它条件不变,则PR与PQ之间又具有怎样的数量关系?请直接写出你的猜想.
(2)要两种证明方法
展开
 我来答
wzhq777
高粉答主

2013-07-05 · 醉心答题,欢迎关注
知道顶级答主
回答量:11.1万
采纳率:95%
帮助的人:2.2亿
展开全部
⑵方法一(面积法):连接BP,过E作EF⊥BC于F,
ΔBEF∽ΔBDC,EF/CD=BE/BD,EF/3=4/5,EF=12/5,
∵SΔBCE=1/2BC*EF=24/5,
而SΔBCE=1/2BE*PR+1/2BC*PQ=2(PR+PQ),
∴PR+PQ=12/5。
方法二(截长法):
过P作PG⊥EF于G,则四边形CQGP是矩形,∴PQ=FG,
∵PG∥BC,∴∠EPG=∠ECB,
∵BE=BC,∴∠REP=∠ECB,∴∠EPG=∠REP,
∵∠PRE=∠PGE=90°,PE=PE,∴ΔPER≌ΔEPG,∴PR=EG,
∴PR+PQ=EF=12/5。
⑶PR-PQ=12/5。
匿名用户
2013-07-12
展开全部
⑵方法一(面积法):连接BP,过E作EF⊥BC于F,
ΔBEF∽ΔBDC,EF/CD=BE/BD,EF/3=4/5,EF=12/5,
∵SΔBCE=1/2BC*EF=24/5,
而SΔBCE=1/2BE*PR+1/2BC*PQ=2(PR+PQ),
∴PR+PQ=12/5。
方法二(截长法):
过P作PG⊥EF于G,则四边形CQGP是矩形,∴PQ=FG,
∵PG∥BC,∴∠EPG=∠ECB,
∵BE=BC,∴∠REP=∠ECB,∴∠EPG=∠REP,
∵∠PRE=∠PGE=90°,PE=PE,∴ΔPER≌ΔEPG,∴PR=EG,
∴PR+PQ=EF=12/5。
⑶PR-PQ=12/5。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
回眸醉傾城baby
2013-07-04
知道答主
回答量:3
采纳率:0%
帮助的人:4393
展开全部
AB都等於3,PR PQ怎麼等於12,图画错了,还是怎么了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式